
AD-A276 721

Technical Report 1451 macs Lisp

in Edwin Scheme

Matthew Birkhol

MIT Artificial Intelligence Laboratory



REPORT DOCUMENTATION PAGE I____
I OBMNo. 0704-0188

___ttbrm oWhgo ffcw rIomm pam n Repais, 2 JImc EHvUIAg. SWe 12D1. Akioa.
IAs~ tad. Offild Uaaefw and Prda wd M704-018. Washbo DC 2IW&

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1993 technical report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Emacs Lisp in Edwin Scheme N00014-92-J-4097

NSF MIP-9001651

6. AUTHOR(S)

Matthew Birkholz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Massachusetts Institute of Technology
Artificial Intelligence Laboratory AI-TR 1451
545 Technology Square
Cambridge, Massachusetts 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Office of Naval Research
Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)

The MiT-Scheme program development environment includes a general-purpose text editor,
Edwin, that has an extension language, Edwin Scheme. Edwin is very similar to another
general-purpose text editor, GNU Emacs, which also has an extension language, Emacs Lisp.
The popularity of GNU Emacs has lead to a large library of tools written in Emacs Lisp.
The goal of this thesis is to implement a useful subset of Emacs Lisp in Edwin Scheme. This
subset was chosen to be sufficient for simple operation of the GNUS news reading program.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Scheme extension language 77
editor multi-language environment 16. PRICE CODE
interpreted language

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 754"1-28&-55M MMO "M 296 (Hey. 2-%9;

P .wbed byANSI MM 2S.IS
2l1-102



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. TR-1451 September 1993

Emacs Lisp in Edwin Scheme

by

Matthew Birkholz Accesion For
NTIS CRA&I )

DTIC TAB 11
U:;av&,tnco,ced 0
J ;IS tific --tio n ......... . ........... . . . . .

ByE~ .................... . . . ......

Dish ibution f

Avaflability Codes

Avail and / or
Dist Special

Copyright @ Matthew Birkholz, 1993

This report is a revised version of a thesis submitted to the Department. of Electrical Engineering
and Computer Science in September, 1993, in partial fulfillment, of the requirements for the
degree of Mast.'r of Science.

This report, describes research clone at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support, for this research is provided in part, by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research contract N00014-
92-J-4097 and by the National Science Foundation under grant number MIP-9001651.



Abstract

The MIT-Scheme program development environment includes a general-purpose
text editor, Edwin. Edwin provides an integrated platform for a number of tools
useful to a. software engineer. Such tools are easily written in Edwin's extension
language, Edwin Scheme - Scheme augmented with editor data types.

Edwin is very similar in appearance and behavior to another general-purpose
text editor, GNU Emacs. Like Edwin, GNU Emacs provides a number of useful
tools, written in its extension language, Emacs Lisp. The popularity of GNU
Emacs, combined with its easy extensibility, has lead to a large and growing library
of tools and enhancements written by GNU Emacs users worldwide. The goal of
this thesis is to allow Edwin users to take advantage of this enormous library of
Emacs Lisp code.

The size and complexity of the Emacs and Edwin systems makes realization of
this goal impossible given the resources available to this project. Instead, a useful
compromise was sought. From the beginning, this project. took as a concrete goal
the emulation of a particularly valuable GNU Emacs tool, the GNUS news reading
program (written by Masanobu UMEDA [umerinamse.kyutech.ac.jp]).

To achieve this goal, an Emacs Lisp interpreter was written in Edwin Scheme.
This interpreter implements approximately 70% of the 734 primitives of the Emacs
Lisp language. It also integrates the Emacs and Edwin user interfaces and envi-
ronments to such an extent that the casual user will not notice the differences
between the emulated Emacs Lisp windows, buffers, and commands, and those of
a normal Edwin Scheme program. The result is that the unmodified source code
for the GNUS news reading program can be loaded into Edwin, and the program's
commands for marking, reading and filing news articles can be used as though
they were normal Edwin commands.



Acknowledgments

I could not have done this alone.
On Jim Miller's recommendation I made Edwin my home, and through his

contacts I learned of the MIT Scheme group's interest in a project of this sort. His
enthusiasm for the project was crucial in bringing Chris Hanson and me together.
As my thesis advisor, Chris deserves more than a little credit for the goal-oriented
approach to this project. Without his direction. I am sure I would still be working
on it.

In addition to these principle characters, there are many friends, relatives, and
even thoughtful acquaintances who have contributed in small yet important, ways
to the successful completion of this work. I will not try to list them all, but there
are a few who deserve special mention. Jinx, BAL, Stephen, Arthur, and Becky
are just a few of the MIT Schemers that have made me feel welcome. Before I
left DEC's Cambridge Research Lab, I relied on the support of Victor Vyssotsky
and Phill Aplev, and benefited from the concern and well-wishes of many others.
Earlier, at DEC's Artificial Intelligence Laboratory, I was constantly encouraged
to "finish your thesis!" by Dave Buffo, Tom Cooper, Eva Hudlicka, and others.

Finally, I could hardly have survived this long, certainly not long enough to
have finished this thesis, without the super-human love and patience of my mother
and father, and the extraordinary Lori Birkholz.

3



Contents

1 Introduction 7
1.1 Related Work ........ .............................. 11
1.2 Summary ......... ............................... 12

2 The Interpreter 15
2.1 Subrs ........................................... 19
2.2 Symbols ........ ................................. 21

9.9.1 Simple Symbols .............................. 2

2.2.2 Variable Symbols ............................... 23
2.2.3 Generic Symbols ....... ........................ 23

3 Reflecting Emacs's State in Edwin 25
3.1 User Variables ...................................... .25
3.2 The Current Buffer .................................. 26
3.:3 Markers ........ ................................. 26
3.4 Window Points ........ ............................. 27
3.5 Named Commands .................................. 28
3.6 Keymaps ......................................... 29
3.7 Modes ......... .................................. 29
3.8 Prompting and Completion ....... ...................... 31

4 Compatibility Issues 33
4.1 Signaling Errors .................................... 33
4.2 Ignoring Deficiencies ................................. 35
4.3 Being Innocuous ........ ............................ 36
4.4 Handling Side-Effects ................................ 36
4.5 Naming Commands and Variables ........................ 37
4.6 Using Comtabs For Keymaps ........................... 39

4.6.1 special keys .................................. 39
4.6.2 esc-map ..................................... 40

4.7 Integrating Essential Emacs Lisp Facilities ................... 40
4.8 Miscellaneous Other Discrepancies ........................ 41

4.8.1 mode-line-format ............................. 41
4.8.2 this-command and last-command ................... 42
4.8.3 local-set-key ................................ 42
4.8.4 process-status-message ........................ 43
4.8.5 substitute-command-keys ........................ 43

5 Conclusion 45



8

A The Primitives 49
A.0.6 Index ............................... 49
A.0.7 Documentation ......................... 67



7

1 Introduction

The MIT-Scherne[3] program development environment includes a general-purpose
text editor, Edwin. Edwin provides language-specific support for editing Scheme
source code, plus convenient interfaces to other tools in the MIT-Scheme envi-
ronment, e.g. the debugger and the interpreter. In addition to these software
development functions, Edwin provides tools for manipulating directories of files,
running Unix programs as subprocesses, reading Unix mail messages, and editing
source files written in other languages. Consequently, Edwin fills the same role
as the general-purpose editor GNU Emacs[9], providing an integrated platform for
many of the tools used by a software engineer.

GNU Emacs is a general-purpose text editor in widespread use. It is easily
extended via its powerful extension language, Emacs Lisp[5]. This ease of extensi-
bility has encouraged the development of a large library of tools and enhancements
written by GNU Emacs users worldwide. This library continues to grow as users
experiment with new tools for a variety of tasks. The goal of this thesis is to show
that Edwin can be extended so that it can take advantage of this enormous library
of Emacs Lisp code.

While Edwin is very similar in appearance and behavior to GNU Emacs, it is
nonetheless very different internally. Edwin's extension language is Edwin Schrme
- Scheme[2] augmented with editor data types. Thus, Edwin Scheme inherits
Scheme's lexical scoping of variables, whereas Emacs Lisp uses dynamic scoping.
Edwin Scheme's internal data structures also differ from those of Emacs Lisp in
many details. As a result, there is no straightforward translation from Emacs Lisp
code to Edwin Scheme code.

A few valuable GNU Emacs tools have been translated by hand into Edwin
Scheme code, and the non-trivial translation has offered opportunities to improve
on the behavior of the Emacs tools. However, the significant translation effort
discourages experimenting with interesting new Emacs tools. Also, the translated
source code is radically different from the original Emacs Lisp making it. difficult
to track later improvements to the Emacs tools and make corresponding improve-
ments to the Edwin tools. To avoid both problems, Emacs Lisp programs need to
be loaded and evaluated directly, without modifications to the Emacs Lisp source
code.

To solve this problem, an Emacs Lisp interpreter was written in Edwin Scheme.
This interpreter does its best to faithfully implement the behavior of the original
Emacs Lisp interpreter and runtime system as provided by GNU Emacs version
18.59, while also integrating this runtime system with the existing Edwin runtime
system. Both of these systems are fairly large and complex. It is beyond the scope
of this thesis to describe the many data. structures and routines used in both Emacs
Lisp and Edwin Scheme. Instead, it is assumed that the reader is well acquainted
with both systems, or at least, is familiar with Lisp environments and equipped



8 1 INTRODUCTION

with the Emacs User Manual[9], the Emacs Lisp Reference Manual[5], and the
MIT-Scheme Reference Manual[4].

The rest of this introduction will orient the well-equipped reader in the direc-
tion used to approach the problem. It describes the motivation for choosing to
implement an Emacs Lisp interpreter and to emulate its runtime environment. It
also describes the advantages sought when attempting to integrate the emulated
environment's state with Edwin's, and notes the issues that arise when melding
the two.

The problem of using unmodified Emacs Lisp programs could be solved by au-
tomatic translation into Edwin Scheme by an Emacs Lisp compiler. The compiler
would take over the job currently done by hand. However, the compiler would
have to be rather sophisticated in order to produce the non-trivial translation. It
would have to do extensive global analysis in order to determine the actual scope
of the indeterminately scoped Emacs Lisp variables. This is necessary if they
are to be implemented by Edwin Scheme's efficient local variables. The compiler
would also have to do extensive type inference when operations on Emacs Lisp
data types have to be translated into operations on dissimilar Edwin Scheme data
types. These analyses would be particularly difficult because of the widespread use
in Emacs Lisp programs of data structures storing arbitrary functions. Without
extensive analysis, the compiler will have to produce code that does little more
than mimic the original Emacs Lisp interpreter. Finally, Emacs Lisp includes an
eval primitive that gives programmatic access to the Emacs Lisp interpreter. It
is used frequently, even in some of the more desirable Emacs Lisp programs. All
of these things argue strongly for the implementation of an interpreter.

The Emacs Lisp interpreter and runtime system could be emulated in the MIT-
Scheme environment by a program entirely separate from Edwin. The emulator
could manage its own windows and buffers, use its own variables and keymaps, and
dispatch on its own command key input to execute Emacs Lisp commands. The
program could emulate Emacs with complete accuracy, but it would offer few ad-
vantages over running Emacs itself as a separate process. The program would run
Emacs Lisp programs in MIT-Scheme environment, making them more accessible
for integration with Edwin. but the separate emulator alone would not actually
provide any integration. For example, there would still be both Emacs Lisp and
Edwin Scheme variables named fill-column, each one having the same meaning
to the user. Text would still have to be explicitly extracted from Emacs buffers
and inserted into Edwin buffers before Edwin Scheme programs could manipulate
it.

Emulating Emacs Lisp in the MIT-Scheme environment, will be most advanta-
geous when the Emacs Lisp emulation can reflect its state in Edwin's state and
vice versa. This will integrate multiple representations of what are conceptually
the same things. When Emacs Lisp code sets its fill-column variable, the in-



9

formation will be reflected in the value of the Edwin Scheme variable; and, when
Edwin Scheme code sets its fill-column variable, the new value will be reflected
in the Emacs Lisp variable. Whether Edwin's state and the emulator's state are
automatically kept. consistent or actually shared, the result is the same: the user
does not have to remember to set both versions of the default right margin.

Integration of the two runtime systems will also allow either kind of program
to cooperate with the other. When an Emacs Lisp program like GNUS displays a
buffer containing the text of a Usenet article, the Emacs buffer will be reflected by
an Edwin buffer with the same content. Normal Edwin commands can then ma-
nipulate the article text. The GNUS program could even be extended with Edwin
commands written using the powerful facilities of the MIT-Scheme environment.

Integration of the user interfaces will have especially compelling advantages.
The user will only have to interact with one interface and will not have to distin-
guish and switch between two, slightly different interfaces. To do this, the Emacs
Lisp emulator will have to reflect Emacs windows as Edwin windows, and Emacs
key bindings as Edwin key bindings. If the command key dispatching mechanisms
of Emacs and Edwin are significantly different, the necessary reflections may be
difficult to implement.

Accurately reflecting each system's state in the other's state can present a
number of problems. Conceptually identical information may be represented in
very different ways. An atomic value could simply be translated from one format
to another depending on how it is accessed. An aggregate value, however, would
have to be translated into an analogous data structure in the other runtime system,
and the two copies would have to be kept consistent. Consistency is particularly
difficult to implement and expensive to maintain when side-effects to the data
structures are possible.

Fortunately, a completely accurate reflection is not necessary. Side-effects to
some Emacs Lisp runtime data, structures may not be found in the majority of
interesting programs, while others might simply be ignored. Some data structures
are not typically modified by Emacs Lisp programs because they are reserved to
the user. Others are modified only to form new values which are then re-installed
in the runtime system. The reflection in the other runtime system could simply be
a new copy translated from the value that was re-installed. Side-effects to these
data structures would not have to be detected in order to make many programs
work. While side-effects to other types of runtime system data, structures might
be important enough to warrant, their detection and reflection, so far this has not
been necessary.

Some operations of Emacs Lisp can make accurate reflection more difficult, than
if they were not allowed. If these operations are rarely used, the emulator may
be able to restrict, such usage so as to simplify the translation or sharing of state
information. A good example is the use of vector operations to access and modify



10 1 INTRODU(CTION

bindings in some Emacs Lisp keymaps. This is possible because some Emacs Lisp
keymaps are represented by vectors. However, most Emacs Lisp programs only use
the more abstract operations for accessing and modifying keymap bindings (e.g.
lookup-key and define-key). Restricting the emulation of Emacs Lisp keymaps
so that only the abstract operations are supported allows Emacs Lisp keymnaps
to be represented by Edwin command tables. By sharing this representation.
Emacs Lisp's command dispatch mechanism is much more easily reflected in Edwin
Scheme's.

While restrictions on Emacs Lisp programs can ease the difficulty of accurate
emulation, so can generalizations of Edwin Scheme. Edwin already allows arbi-
trary procedures to be specified to perform certain tasks. The interface to Edwin's
minibuffer completion commands can be so specified, allowing the emulator to
provide special procedures that compute completions from Emacs Lisp data struc-
tures. In contrast, the Emacs minibuffer completion commands only work with a
couple specific data, structures and have very few escapes into procedural code.

However, there are still areas where Edwin could be further generalized. Ed-
win could even be changed to directly support Emacs Lisp data. structures. For
example, Edwin's command dispatch mechanism could be generalized to recognize
and handle Emacs Lisp keymaps.

This project did not pursue most of these opportunities, preferring to limit
modifications to Edwin and to avoid adding Emacs Lisp specific code to it. This
has made some parts of the emulator more difficult to implement or imposed re-
strictions on its accuracy or completeness. Future work may abandon the complete
separation of the Emacs Lisp emulator from Edwin. The advantages of doing this
are considered in later sections.

It is worthwhile to note that complete emulation and integration of the standard
Emacs Lisp runtime system is difficult simply because of the system's size. The
standard Emacs Lisp runtime system is based on 587 primitive functions manipu-
lating 147 global variables and 11 data types, all implemented in C. It also includes
the functions and variables declared in 22 essential Emacs Lisp files pre-loaded into
every Emacs, 50 packages and modes autoloaded by the standard configuration,
and some 70 additional files.

Complete integration would unify all the redundant functionality, such as the
Emacs Lisp and Edwin Scheme interfaces to sendmail, but integrating all of the
functionality provided by Emacs with all of the functionality provided by Edwin
would take more time than this project allows. Less than complete integration
would still accrue benefits where it is pursued, as described above. Where it. is
not, there may continue to be redundancies such as the separate fill-column
variables. There may also continue to be gaps in cooperation such as Edwin
Scheme commands that, do not have their intended effect because Emacs Lisp
data was not available in an analogous Edwin Scheme form. However, these are



1.1 Related Wbrk 11

just inconveniences. It is the accuracy of the emulation that allows Einacs Lisp
programs to run.

A complete emulation would only have to implement the Emacs Lisp primnitives.
Unfortunately, some of these primitives require functionality not supported by
Edwin. Implementing them would have been very time-consuming and would have
enabled few additional programs to run. This project focuses instead on emulating
the essential primitives that are required for the operation of the majority of Emacs
Lisp programs.

The essential Emacs Lisp primitives and the essential integration of Eniacs and
Edwin were hard to define at the beginning of this project. The large number of
tradeoffs between accurate emulation, tight integration. and cost of implementation
would have also made it hard to determine whether the resulting emulation was
a success. Instead, a concrete goal was chosen that would demonstrate a useful
emulation of Emacs Lisp and a usable integration with Edwin's user interface.
That goal was the rudimentary operation of a sophisticated and valuable Emacs
Lisp program, the GNUS news reader.

1.1 Related Work

The techniques used in this thesis project. were largely inspired by generic inter-
preter implementation techniques. The Edwin Scheme code for the Emacs Lisp
interpreter is a straightforward interpreter implementation similar to the meta-
circular evaluator described in [1] and closely follows the implementation in C that
is distributed with GNU Emacs. The emulation of the Emacs Lisp data types and
functions had to conform to the detailed behavior of GNU Emacs's implementation.
and were written to take advantage of the most abstract functionality of Edwin
Scheme. Thus, the source code and documentation of these two implementations
have had the largest impact on the nature of this work.

It. is a peculiarity of this project that programs written in two different lan-
guage, to manipulate two different runtime environments must nevertheless oper-
ate in one shared environment. A similar situation is often addressed by compat-
ibility libraries. For example, C applications written for BSD Unix can be run in
a DOS environment provided all the required functionality is implenlented by an
available BSD-compatible C library.

Compatibility libraries may address the same goal as this project- emulating
a different runtime environment within the native one. However, they commu-
nicate information to their client, programs through very simple data structures
and without sharing. This sharing is a. ubiquitous feature of both Emacs Lisp and
Edwin Scheme. Procedures written in both languages interface via call by sha4 ring
where the information passed between procedures. e.g. from a runtime procedure
exposing information about thie runtimne environment to an applicat ion program, is
identified by its implementat ion in memory, and where imodificat ions to this mere-



12 1 INTRODUCTION

orv can communicate information back to the runtime environment. The issues
raised by data structures that are shared between the runtime environment and
an application program are not typically addressed by compatibility libraries.

Related work on heterogeneous systems also avoids these issues. Most of the
work in heterogeneous systems involves the implementation of distributed services
made up of cooperating applications residing oil different machines with only a net-
work for communication. Applications pass information via a Remote Procedure
Call abstraction that only provides call by copying behavior. [7] Thus, the issues of
shared data structures never arise.

In mixed-language programming systems, the different modules of an applica-
tion can be written in different languages and can use shared memory to share data
structures. In some of these systems, information is still passed between modules
using call by copying[8][6]. Other systems agree in advance on the implementa-
tion of any data structures that will be shared between languages (e.g. the VAX
calling standard). Finally, many modern Lisp systems provide a bridge between
their native data types and those of other languages via foreign function interfaces.
These interfaces either use call by copying semantics for data structures that are
transparently converted between native data types, or they provide operations for
declaring and manipulating alien data structures as new types. This project must
support shared data that can be manipulated as though native data structures in
two languages.

1.2 Summary

The motivation for this work was the desire to run Emacs Lisp programs as if
they were Edwin Scheme programs, without having to translate them into Ed-
win Scheme by hand. The approach that was taken was to emulate the Emacs
Lisp interpreter and runtime environment and to integrate the emulated environ-
ment with Edwin's. In particular, the emulated Emacs user interface (including its
windows and command key dispatch mechanism) were to be integrated with Ed-
win's, so that Edwin users could continue to use one, familiar interface. Complete
and accurate emulation and integration was impractical for a variety of reasons.
However, there seemed to be acceptable compromises in both accuracy and com-
pleteness that would allow a minimally useful system be built with the available
resources. As a concrete goal, the minimally useful system was expected to be
able to execute the GNUS news reading program well enough that articles could
be retrieved and read using the normal Edwin user interface.

Many compromises were made in the accuracy of the Emacs Lisp emulation,
and many aspects of Emacs and Edwin have not been integrated. The follow-
ing sections document the implementation of the Emacs Lisp emulator and these
deficiencies, in anticipation of further work. Section 2 describes the implenienta-
tion of the Emacs Lisp interpreter. In particular, the irnl)ienentation of Emacs



1.2 SummarY 13

Lisp's symbols and subrs is discussed, showing how they support the reflection

of the emulated Emacs Lisp runtime environment in the Edwin Scheme environ-
ment. Section 3 tackles the details of implementing that reflection. First, some of
the guiding principles and useful techniques are presented. Then, the emulation
of specific Emacs Lisp data structures and functionality is described. Section 4
discusses the specific compatibility issues raised by the less than complete and
accurate Emacs Lisp emulation. The conclusion summarizes the qualified success
of the project and the work left to be done.



14 1 INTRODUCTION



15

2 The Interpreter

An Emacs Lisp program starts out as a text file describing a sequence of Emacs
Lisp expressions, which the load primitive can read and evaluate. The evaluation
of these expressions typically installs the commands, hooks, and command key
bindings of the Emacs Lisp program in the runtime system. The program can
then be invoked by the user directly via. command key input, or indirectly through
commands that run its hooks.

This section describes the process of reading an Emacs Lisp program - con-
verting the text describing Emacs Lisp expressions into data structures that can
be evaluated by the interpreter. It also describes the operation of the interpreter
proper - how the eval primitive interprets expressions as instructions for installing
and later executing the Emacs Lisp program. In this discussion, it is assumed that
the reader is familiar with the general organization and operation of Lisp inter-
preters and runtime environments. This section will focus on the peculiarities
of reading and evaluating Emacs Lisp programs. In so doing, it will describe in
detail the representation and interpretation of two important Emacs Lisp data
types. These data types provide the hooks that lead the interpreter into the Ed-
win Scheme code that will emulate the Emacs Lisp runtime system and reflect its
state in Edwin.

The first stage of interpreting Emacs Lisp code is to read it, to produce a
representation of the Emacs Lisp data structures denoted by the input text. The
syntax of Emacs Lisp code is similar to that of Edwin Scheme, but there are
differences in the syntax of character, string, and vector literals that required that
a new reader be written. The new reader could have produced instances of special
Emacs Lisp types distinct from the Scheme data types, but few of the Emacs Lisp
types differed from an analogous Scheme data type. The implementation actually
started out making this distinction, using distinct operators to manipulate the
Emacs Lisp data types. There was no performance penalty because the operators
were substituted for equivalent Scheme operators at compile-time. However, the
constant conversions, particularly from literal Scheme constants to their Emacs
Lisp equivalents, caused the clarity of the resulting code to suffer. Eventually,
the reader was revised to produce native Scheme data types, and the rest of the
source code was changed to manipulate them using the normal Scheme operators.
The reader now produces Scheme integers to represent Emacs Lisp numbers and
characters. Scheme strings and vectors represent Emacs Lisp strings and vectors.

A Scheme symbol is not used to represent an Emacs Lisp symbol because the
two objects are so different. When interned into the global Scheme obarray, a
Scheme symbol is unique to a case-insensitive name, but has no inherent state
other than its name. In contrast, an Emacs Lisp symbol is interned into one
of many, possibly user-defined obarrays. (In Emacs, obarrays are vectors whose
elements are initially zero. The emulator uses the same representation so that



16 2 THE INTERPRETER

Emacs Lisp code that creates such a vector and uses it, as an obarray will be
emulated correctly.) An interned Emacs Lisp symbol is unique to a case-sfnsiti'.t
name and an obarray, and it has additional inherent state: a value, a function, a
property list. A Scheme structure 1 is used to represent an Emacs Lisp symbol
and hold this state, just as a C struct is used in Emacs. This maximizes the
performance of the interpreter, which must access a symbol's function and current
value quickly. The Scheme structure is also useful to hold information about how
the Emacs Lisp symbol is being reflected into Edwin. (This is described in more
detail in Section 2.2.)

Like Emacs Lisp strings and vectors, Emacs Lisp lists are represented by native
Scheme lists, implying that Emacs Lisp conses are represented by Scheme pairs and
Emacs Lisp's empty list is represented by Scheme's empty list. This takes some
care because Emacs Lisp represents its empty list with a, symbol named nil. Like
any other symbol, this symbol can have a function and property list, and so ought
to be represented by a symbol object. In fact, the emulator does create a symbol
object to emulate the Emacs Lisp symbol nil. It never appears at the ends of lists
or anywhere else in Emacs Lisp data structures, but it is substituted for Scheme's
empty list whenever a symbol operation is being applied. The fields of this symbol
structure hold the name, function, property list, and any other information about
nil.

These are all of the Emacs Lisp data structures that can be denoted by input
text. Instances of the other Emacs Lisp data types, such as windows, buffers,
and markers, are parts of the Emacs Lisp runtime system and are represented
according to how they are reflected in Edwin's runtime system. This is discussed
in Section 3.

Once Emacs Lisp code has been read, it can be evaluated by the eval primi-
tive. As in the meta-circular evaluator of [1], this primitive, along with the funcall
primitive, forms the core of the interpreter. The eval primitive is applied to an
expression to start the process of computing the expression's value. The nature
of this process depends on the type of the expression. If the expression is a sim-
ple symbol, the value of the symbol is returned. The value is computed by the
%symbol-value procedure, which is described in Section 2.2. Any other type of
object is either a list representing a function call (of which special forms are a
special case) or a self-evaluating object.

Normal function call expressions are evaluated by applying a function, de-
scribed by the first element of the expression, to the values of the argument ex-
pressions (the rest of the elements of the expression). However, Emacs Lisp, like
all Lisps, uses the same list syntax to represent special forms and macro calls.

'A Scheme siruclure is an object, that, contains a number of named fields. Tile type of a Scheme
structure is declared by a define-structure expression whose syntax and semantics are similar
to Common Lisp defstruct expressions. define-structure is an MIT-Scheme extension to
standard Scheme and is described in [4].



17

These other kinds of expressions must be handled differently; so, when applied to
a function call expression, a Lisp evaluator must first determine, based on the first
element of the expression, whether it is a normal function call, a macro call, or a
special form.

In Emacs Lisp, the first element of a function call expression can be a symbol.
The symbol can be thought of as the name of a function, and the function it names
is tile value of the function field of the symbol structure (mentioned above, and
described in more detail in Section 2.2). This field can be empty, causing the eval
primitive to signal void-function. The field can also refer to another symbol.
This is function aliasing. The function named by the first symbol is defined to
be the same function named by the other symbol. An arbitrarily long chain of
function aliasing is possible, with the function field of each symbol pointing to the
next symbol in the chain. To find the ultimate function named by a symbol or chain
of symbols, the eval primitive uses the %function* procedure. This procedure
is actually applied to the first element of a function call expression regardless of
its type. If the first element was a symbol, any function aliasing is resolved and
the named function is returned. If the function aliasing is circular, %function*
will end up in an infinite loop trying to find the end of the chain. A circular
chain could be detected and an error raised without much added expense, but the
implementation was left as it is since this is exactly how the original Emacs Lisp
interpreter works.

Once the %function* procedure has found the function described by the first
element of a function call expression, the eval primitive can determine how to
evaluate the expression. The function can be any of several things: a primitive
subroutine (a subr), a lambda expression, a macro expression, or an autoload
description. If it is not. one of these things, eval signals an invalid-function
error. Otherwise, eval proceeds as follows.

If the function is a subr and the subr is marked as a. special form, then the
evaluator applies the subr to the argument expressions. The subr can then evaluate
the appropriate expressions, depending on the required behavior of the special
form. For example, the first argument expression to the if subr is evaluated. If
the value of the expression is not nil, the second expression is evaluated and its
value is returned by the if subr. If the value of the first expression was nil, the
progn subr is applied to the expressions following the second expression (if any).
The value returned by the progn subr (or nil) is returned by the if subr.

If the function is a subr that is not marked as a. special form, the argument.
expressions are evaluated and the subr is applied to the results. When applying
either type of subr, the Scheme predicate procedure-arity-valid? is used to
detect subrs applied to the wrong number of arguments. This allows the emulator
to signal the appropriate Emacs Lisp error immediately, rather than wait to catch
the Scheme wrong-number-of-arguments condition and then signal the Emacs



18 2 THE INTERPRETER

Lisp error.
If the function is a. lambda expression (a list, starting with a particular Emacs

Lisp symbol named lambda), the argument expressions are each evaluated, produc-
ing a list of argument values. The funcall-lambda procedure takes the lambda
expression and the argument values and executes the function. The funcall-
lambda procedure first examines the lambda expression's parameter list (its sec-
ond element) for any &optional or &rest keywords indicating optional or rest
parameters. During this examination, it rewrites the list of argument values to
include a value of nil for any optional parameters that would otherwise not have
a value, and to collect multiple arguments into a list as the value of a rest param-
eter. The parameter list is also rewritten to produce a new list of the parameter
symbols (without &optional or &rest keywords). If the rewrites are not success-
ful, an Emacs Lisp wrong-number-of-arguments error is signaled. Otherwise, the
%specbind procedure is applied to the parameters, the arguments, and the thunk
during which the bindings should be active. The thunk applies the progn primitive
to the body of the lambda expression (the elements following the second element).

The %specbind procedure is a straightforward implementation of Emacs's shal-
low binding mechanism. When a symbol is bound to a value, %specbind first saves
the symbol's old value (if any) and then sets the symbol to the new value. This
is accomplished using the normal symbol operations %symbol-bound?, %symbol-
value, and %set-symbol-value!. As control passes out of the dynamic extent
of the call to %specbind, the symbol's original state is restored, again using
the normal symbol operations %set-symbol-unbound! or %set-symbol-value!.
%specbind was originally implemented by a call to Scheme's dynamic-wind proce-
dure, which ensured that the code restoring the symbol to its original state would
be run before control passed out of the dynamic extent of the call to %specbind,
whether because of a normal return or a non-local exit.

Unfortunately, Scheme's dynamic-wind mechanism was too expensive to use
every time a symbol was lambda-bound. Instead, %specbind just pushes a record
onto the list assigned to the Scheme variable *specpdl*. The record includes the
symbols that were bound and the states they had before they were bound. If
control exits through %specbind via a normal return, %specbind pops the record
off *specpdl* and uses its information to restore the parameter symbols to their
previous states. Handling non-local exits, however, requires the cooperation of all
Emacs Lisp primitives to which a non-local exit could return. These primitives
must remember the value *specpdl* had when control first. passed through them,
and restore that. value if control returns to them via a non-local exit. These
primitives must restore *specpdl*'s value by popping records and using their
information to restore symbols to the states they had before they' were bound.
When enough records have been popped, *specpdl* will regain its former value
and all symbols that had been subsequently bound will be restored to their original



2.1 Su brs 19

states.
If the function is a macro expression (a list whose first element is a particular

Emacs Lisp symbol named macro), then the rest of the list should be a lambda,
expression. The lambda expression is applied to the unevaluated argument expres-
sions using funcall-lambda. The value returned by funcall-lambda should be
another expression that eval can evaluate. The value of this other expression is
finally returned as the value of the original function call expression.

If the function is an autoload description, the do-autoload procedure is applied
to it. This procedure loads the Emacs Lisp file named in the description, and then
checks that the function of the function call expression is no longer an autoload
description. If it is still an autoload description, an Emacs Lisp error is signaled.
All of this has to be done inside a thunk passed to protect-with-autoload-
queue, which ensures that some of the modifications made during the thunk will
be undone if an error is signaled. This is one of the defined behaviors of autoloading
or requiring (loading a file as a result of calling the require subr) in Emacs. The
effects to be undone are collected as a list, the value of the Emacs Lisp autoload-

queue variable. When no autoload is in progress, the value of this variable is
nil and no effects are recorded. During autoloading, the value of the variable
is set to a non-nil value (initially, the symbol t). Any Emacs Lisp primitives
that change the function values of Emacs Lisp symbols, or add features to the
feature list, will notice this and record the original function value or feature list.
protect-with-autoload-queue uses Scheme's dynamic-wind procedure to ensure
that the recorded effects are undone if an error is signaled. Once the specified file is
successfully loaded and the function of the function call expression is no longer an
autoload description, the eval primitive can again try to evaluate the expression.

2.1 Subrs

In Emacs Lisp, subrs are the primitive funcallable objects. In the emulator, subrs
are application hooks 2 and thus Scheme funcallable objects. The application hook
data for each subr is a Scheme structure whose fields are assigned to most of the
information associated with Emacs Lisp subrs: a name, a documentation string,
an interactive specification, and a flag indicating whether the subr is a special
form. The arity of the Emacs Lisp subr is represented by the arity of the apply
hook procedure.

As described above, the interpreter takes care to pass the unevaluated argument,
expressions from the function call of a subr which is a special form. This allows
the subr's procedure to interpret the syntax of the special form as required and to
call the interpreter to evaluate the appropriate subforms in the appropriate order.

2An application hook is an object that can contain arbitrary user data and also be applied
like a procedure. Application hooks are an MIT-Scheme extension to standard Scheme and are
described in [4].



20 2 THE INTERPRETER

A few subrs have to implement non-local control flow, which they do using
MIT-Scheme's condition system and call-with-current-continuation. The
catch subr captures its continuation and establishes a handler for a special type
of Scheme condition only signaled by the throw subr. This type of condition has
fields assigned to the throw tag and value. The handler is active while the body
of the catch special form is evaluated. If the handler is invoked and the signaled
condition's tag matches the one to be caught, then the thrown value is passed
to the captured continuation, which returns that. value from the catch subr call.
Otherwise, the value of the catch special form's body is returned normally. The
throw subr just. needs to make the special type of Scheme condition using its tag
and value arguments, and signal it. If the condition is not caught, the default
handler for the condition tries signaling an Emacs Lisp no-catch error, just as
would happen in Emacs. If the error condition is not caught., its default condition
handler will call Edwin's editor-error procedure with message strings like the
ones displayed by Emacs.

Similar to catch, the condition-case subr captures its continuation and es-
tablishes a handler for a second special type of Scheme condition representing an
Emacs Lisp error. This type of condition has fields assigned to the Emacs Lisp
error's name and associated data. The handler is active while the body of the
condition-case special form is evaluated. If the handler is invoked and the sig-
naled condition matches one of the special form's handlers, then that handler's
body is evaluated and its value is passed to the captured continuation, which re-
turns that value from the condition-case subr call. Otherwise, the value of the
condition-case special form's body is returned normally. The signal subr just
needs to make the special type of Scheme condition using the error name and data,
and signal it. If the error condition is not caught, its default condition handler will
call Edwin's editor-error procedure with message strings like the ones displayed
by Emacs.

The bulk of the remaining implementation details have less to do with the
behavior of the interpreter and more to do with the behavior of specific editor
data. structures. These details are discussed in the context of reflecting the Emacs
Lisp runtime system into the Edwin Scheme runtime system. There are a few
general observations about. the implementation that can be made here and that
should be useful to keep in mind when reading or modifying the source code.

The DEFUN syntax turns an Emacs-style subr declaration into a subr object
bound as the function of a symbol object. Both the symbol and subr objects are
assigned to Scheme variables according to a naming convention. The subr object is
assigned to a Scheme variable with the same name except. that el: is prepended.
The prefix avoids shadowing useful Edwin variables with the same names as some
of the Emacs primitives. The symbol object, is assigned to a Scheme variable with
the same name except, that. Q is prepended. This convention is reminiscent of a.



2.2 Symbols 21

naming convention followed in Emacs's C code. A number of other symbol objects
are used as constants by the emulation code, and are also assigned to variables
according to the same convention. An example is the constant symbol named t,
which is bound to the Scheme variable Qt.

The arguments to subrs are typically the values of Emacs Lisp expressions,
and must be type-checked and coerced to Scheme equivalents. Again, following a
convention in the Emacs C code, a number of procedures are provided named, e.g.
CHECK-NUMBER, CHECK-CHAR, CHECK-MARKER-COERCE- INT, etc. These procedures
implement the same type-checking done by Emacs's C code and signal the same
Emacs Lisp errors when necessary. They also help ensure that the correct con-
versions are performed. For example, CHECK-CHAR checks that, its argument is an

Emacs character (an integer) and converts it to the corresponding Scheme char-
acter object. CHECK-POSITION-COERCE-MARKER accepts a position expressed as an
Emacs buffer position (using 1-based indexing) or a marker (an Edwin mark) and
converts the given position to a Scheme buffer position (0-based index), signaling
the appropriate Emacs Lisp error if a marker was given that points nowhere.

2.2 Symbols

As mentioned at the beginning of this section, an Emacs Lisp symbol is repre-
sented by a Scheme structure whose fields contain the symbol's value, function,
and property list. The symbol structure also holds hooks (procedures) called by
some operations on the symbol. These specialized procedures implement the oper-
ations and arrange to reflect the state of the symbol in the Edwin runtime system,
or to access the Edwin runtime state in order to reflect it in the value of the sym-
bol. The hooks are assigned to the following fields of the symbol structure and are
used to implement the corresponding symbol operations described here:

bound? (%symbol-bound? symbol)
Returns #t if symbol currently has a value; else, it returns #f.

unbound! (%set-symbol-unbound! symbol)
Causes symbol to have no current value.

get-value (%symbol-value symbol)

Returns the current value of symbol. If symbol does not have a value,
a void-variable error is signaled.

set-value! (%set-symbol -value! symbol valuc)
Sets the current value of symbol to value.

get-default (%symbol-default symbol)

Returns the default value of symbol.



99 2 THE INTERPRETER

set-default! (%set-symbol-default! symbol valut)
Sets the default value of symbol to ',aluc.

make-local! (%make-variable-buffer-local! symbol)
Makes the symbol have a local value in the current, buffer.

make-all-local! (%make-local-variable! symbol)
Makes the symbol have local values in all buffers.

kill-local! (Mkill-local-variable! symbol)
Makes the symbol have no local values.

set-docstring! (%put! symbol property value)
The procedure assigned to the set-docstring! field is called when-
ever the %put! operation adds a variable-documentation property
to symbol. This allows the documentation string for an Emacs Lisp
variable to be reflected in the corresponding Edwin editor variable, if
any.

There are a few other fields of the symbol structure. The name, value, func-
tion, and plist slots should be familiar as the normal attributes of Lisp symbols.
(Why there is a value slot while there are also get-value and set-value! hooks
is explained below.) The next field is used to chain interned symbols that have
hashed to the same bucket in the Emacs Lisp obarray. The command field points
to an Edwin command created to reflect the Emacs Lisp command named by the
symbol.

There are a number of other operations on symbols too. The %symbol-name,
%symbol-function, and Ysymbol-plist operations are straightforward, accessing
the corresponding fields of a symbol structure. These operations are peculiar to
Emacs Lisp and are not reflected in Edwin, so they do not need any hooks.

2.2.1 Simple Symbols

Most Emacs Lisp symbols are used as local variables - i.e. they are bound for the
duration of a function call. They have one global value, not multiple, buffer-local
values, and their values do not have to be reflected in the Edwin runtime system.
The operations on these simple symbols are straightforward, and do not require
individual hooks that escape into arbitrary reflection code. In this common case,
the overhead of calling hooks (closures) can be avoided. The symbol operations
listed above first access the value field of a symbol, since this field will typically
contain the current global value of the simple symbol, or a special constant that
indicates that the symbol is an unbound simple symbol. However, the value field
may contain a second special constant, that indicates that the symbol is not a simple



2.2 Symbols 23

symbol. In that case, the fields named above will contain hooks implementing the
corresponding operations on the symbol.

2.2.2 Variable Symbols

Some Emacs Lisp symbols have buffer-local values - values that are current only
when a certain buffer is current. The Emacs Lisp emulator implements such a
symbol by finding or creating an Edwin editor variable with the same name. The
editor variable can have buffer-local values, and already implements the behavior
required of the Emacs Lisp symbol. The Emacs Lisp symbol is labeled as a non-
simple symbol and provided with hooks that implement each of the operations
listed above in terms of analogous operations on the Edwin editor variable. By
default, the editor variable is maintained with identical state - its values are
always identical to the emulated Emacs Lisp symbol's values. The only data
type conversion is from an Emacs Lisp value of Qt (the symbol named t) to the
analogous Edwin Scheme constant #t. (This satisfies pre-existing editor variables
that insist on having only boolean values.)

2.2.3 Generic Symbols

Some Emacs Lisp symbols need to run specialized code to access or modify their
values. This may be because the value of the symbol is intended to reflect (and
be reflected in) the state of the Edwin Scheme runtime system. Emacs has similar
types of symbols, whose values reflect values in C data structures. These kinds of
symbols cannot be made to have buffer-local values, using the make-variable-
buffer-local or make-local-variable subrs (though some of these symbols are
defined to have buffer-specific values). Similarly, the %make-local! and %make-
all-local! operations on generic symbols have no effect.

The details of how variable and generic symbols are used to integrate the em-
ulated Emacs Lisp runtime system and the Edwin Scheme runtime system are
addressed in Section 3.



24 2 THE INTERPRETER



25

3 Reflecting Emacs's State in Edwin

Many of Emacs's data structures are represented by Edwin data structures, e.g.
Emacs buffers are represented by Edwin buffers. This reduces the implementation
effort by taking advantage of existing Edwin functionality, and also helps integrate
the runtime systems by allowing them to share state. To implement this sharing,
the emulated Emacs Lisp primitives must be able to realize new states of the
emulated Emacs Lisp runtime system by modifying the shared data structures,
and also must be able to infer the state of the Emacs Lisp runtime system from
the state of the Edwin data structures. For example. an Emacs primitive that
sets an Emacs marker to a particular point in an Emacs buffer is implemented
by a procedure that sets the corresponding Edwin mark to the same point in the
corresponding Edwin buffer. An Emacs primitive that returns the position of an
Emacs marker will infer the correct number from the index of the corresponding
Edwin mark.

A number of techniques are used to share as much state between Emacs Lisp
and Edwin Scheme as possible. Sometimes this sharing is assisted by additional
information in separate data structures maintained by the emulation code. Some-
times it is made possible by hacking Edwin data structures below their abstract
interfaces. However, there are some aspects of the emulated Emacs Lisp runtime
state that cannot be easily or efficiently realized in terms of Edwin's runtime state.
In these cases, the Emacs Lisp emulation has to implement this state separately.
The rest of this section discusses the techniques used to emulate the significant
aspects of Emacs Lisp's runtime state, and to reflect this state in Edwin Scheme.

3.1 User Variables

An Emacs Lisp program is often parameterized by a number of uscr 'ariables
- symbols whose values are intended to be modified by users to customize the
behavior of the program. These symbols have a variable-documentation prop-
erty whose value is a string starting with an asterisk. Only these symbols satisfy
the user-variable-p predicate and can be modified using the set-variable or
edit-options commands. Edwin editor variables can play a similar role, and are
modified by the Edwin set-variable command. The Edwin command is more
general, allowing any editor variable to be modified, but. it is typically used in the
same way as the Emacs command.

To reflect Emacs's user variables as Edwin editor variables, all symbols declared
by the defvar and defconst subrs to have documentation strings starting with
an asterisk are made into variable symbols (using the %make-symbol-variable!

procedure). The variable symlbols store their values as the values of Edwin editor
variables with the same names. They also reflect. their variable-documentation
properties in the documentation strings oft lhe editor variables. Thus., the user can



26 3 REFLECTING EMACS"S STATE IN EDWIN

get the variable documentation, and inspect and set the values of these symbols
using Edwin's normal variable commands.

3.2 The Current Buffer

Emacs has the notion of a. current buffer-- the buffer acted upon by most of its
primitives either implicitly, or by default. The current buffer is set to the buffer
associated with the selected window before each interactive command is invoked.
It can be temporarily changed (until the next interactive command is invoked) by
the set-buffer subr. This primitive just changes the notion of the current buffer;
it does not change the selected window or the buffer associated with the selected
window.

Edwin also has a notion of a current buffer, which serves the same role as
Emacs's. Edwin's current buffer is defined as the buffer of the selected window.
It cannot be changed without changing either the selected window or the buffer
associated with the selected window.

Edwin's notion of the current buffer, therefore, is incompatible with Emacs's.
The Emacs Lisp emulation must maintain and use a separate notion of the cur-
rent buffer. This state variable is initialized by the code that emulates Emacs's
command dispatch mechanism, and it is set by the set-buffer subr. Fortunately,
most Edwin procedures take an explicit, buffer or mark argument, so the emulator
can easily specify the buffer on which Edwin procedures should operate.

3.3 Markers

Edwin's permanent marks move as characters are inserted or deleted behind them
in their buffer so that they continue to point to the same character, just as Emacs
markers do. However, Edwin actually has two flavors of marks: left inserting
and right inserting. The right inserting marks do not move when characters are
inserted at the position of the mark. Thus, permanent right inserting marks are
used to represent Emacs markers. They implement the correct behavior except
for two minor differences. The first difference is between a mark's index and a
marker's position. A permanent mark's index is the zero-based index of the buffer
character following the mark. A marker's position is the one-based index of the
buffer character following the marker. The second difference is that a marker can
point nowhere, so that it does not slow down inserts and deletes in a buffer.

The first difference is relatively easy to reconcile. The marker-position subr
must return an integer one greater than the index of the Edwin mark that is
representing the Emacs mark. If the marker is pointing nowhere, marker-position
signals the appropriate Emacs Lisp error.

The second difference is accommodated by violating the mark abstraction
slightly. There is normally no way to make an Edwin mark point nowhere. How-



3.4 Window Points 27

ever, the emulation code uses low-level structure modifiers to set a mark's index
and group fields to #f. This is not a legal value for these fields. but Emacs mark-
ers should not be finding their way into Edwin code. Before setting the mark's
fields to #f, the emulator turns the mark into a te-mporary mark, using the Edwin
procedure mark-temporary!. A temporary mark does not appear on a buffer's list
of marks to move because of insertions or deletions. Thus, the strange values of
the mark's fields will not be observed by a buffer while moving its marks, and the
mark will no longer slow down a buffer's inserts and deletes, just like a real Emacs
marker. Once a marker is given a buffer and position again, it can be turned into
a permanent mark using Edwin's mark-permanent! procedure.

Some care must be taken to distinguish between marker positions, which are
one-based indexes, and mark indexes, which are zero-based indexes. Arguments to
Emacs Lisp subr's may specify positions using integers (positions) or markers, and
these are usually converted to the Edwin equivalents required by Edwin procedures
- buffer positions (indexes) or marks. Other arguments to subr's may specify
numbers using integers or markers (e.g. the arguments to the + subr), with the
markers being converted to their one-based positions. The emulator uses three
coercion procedure to help make the correct distinctions and implement the correct
conversions:

CHECK-MARKER-COERCE-INT

Returns an Edwin mark when given an Emacs marker or integer. Oth-
erwise, signals a wrong-type-argument error.

CHECK-NUMBER-COERCE-MARKER
Returns an integer when given an Emacs integer or marker. The integer
is to be used as a number, and so is a one-based position. Otherwise,
signals a wrong-type-argument error.

CHECK-POSITION-COERCE-MARKER
Returns an integer when given an Emacs integer or marker. The in-
teger is to be used as a buffer position, and so is a zero-based index.
Otherwise, signals a wrong-type-argument error.

3.4 Window Points

In both Emacs and Edwin. a window keeps track of its own point into its buffer.
This allows multiple windows to view and edit different locations in the same
buffer. In Emacs, a window's marker is right-inserting - insertions at the marker's
position do not advance the marker. In Edwin. a. window's mark is left-inserting
- insertions at the mark position do advance the marker. If a buffer displayed in
a window is erased and new text inserted, the point, in an Edwin window will be



28 3 REFLECTING EMA(CS'S STATE IN EDWIN

left at the end of the buffer. whereas the point in an Eniacs window will be left at
the start of the buffer.

This is a drastic change in the way a program like GNUS behaves. To elim-
inate this incompatibility, all buffer insertions done by the emulated Emacs Lisp
subrs are performed inside the dynamic extent of a call to %fixup-window-point-
movement. This procedure arranges to find all window points that may be pointing
at the place of insertion. After the insertions, it restores the window points to their
original position.

3.5 Named Commands

A typical Emacs Lisp program will define a number of commands using a defun
expression with a top-level interactive expression in its body. The interactive
expression may provide code or a string specifving how to prompt the user for the
arguments to the command. The program may also declare a command using an
autoload expression with a non-nil fourth argument (from.kbd). Although there
are many ways to create functions that can be called interactively, these are the two
most common techniques. These two techniques intern symbols that can be bound
to command key sequences and executed by the command dispatch mechanism.
The commands can also be executed by giving their names to the M-x command
(execute-extended-command). Although there are other ways to invoke Emacs
Lisp programs. these are the two most common techniques - especially the latter.
For example, the RMAIL program is run by typing M-x rmail; the GNUS program
is run by typing M-x gnus.

A typical Edwin program will define a number of commands using define-com-
mand syntax. This syntax builds a command object that includes an interactive
specification - a procedure or string specifying how to prompt the user for the
arguments to the command. Edwin commands can be bound to command key
sequences or executed by Edwin's M-x command (execute-extended-command).
As in Emacs, the latter is the usual way to run an Edwin program.

To allow Edwin to run Emacs programs as though they were native Edwin pro-
grams, Edwin commands must be created to reflect, the Emacs commands. Since
the interactive specification of an Edwin command can be an arbitrary procedure.
that procedure can get the interactive specification of the Emacs command and
interpret it. returning the command arguments. The procedure that. actually ex-
ecutes the Edwin command would accept the command arguments and apply the
Emacs command to them using the %apply-interactively procedure. which does
necessary initializations (e.g. setting Emacs's current buffer and this-command

variable).



3.6 Keymaps 29

3.6 Keymaps

Edwin's command key dispatching mechanism is controlled by comta.bs. A comtab
associates a. command key with various types of data: a command to be executed, a
secondary comtab (used by the prefix-key command to dispatch additional com-

mand keys), a pair providing both a comtab for dispatching additional command
keys and a command to do the dispatching; a comtab alias (a pair of a comtab
and a command key, which is interpreted as equivalent to the datum associated
with that command key in that comtab), and #f (indicating that the command
key sequence is not bound).

Emacs's command key dispatching mechanism is similar and is controlled by
keymaps. A keymap associates a command key with a number of different types of
data: ai) interactive function, a keyboard macro (string), a keymap alias (a pair of
a keymap and a command key), a secondary keymap, or a, symb)ol whose function
is any of these.

An Edwin comtab can be used to implement the same association as does an
Emacs keymap, assuming that Emacs keymap data can be converted to Edwin
comtab data. This is trivial for secondary keymaps and keymap aliases, which
are already valid comtab data. The other types of keymap data will have to be
converted to Edwin commands. However, Edwin commands are uniquely named,
while most of the keymap data, (the keyboard macros and interactive functions)
are anonymous.

The solution used in this emulation is to create anonymous commands using
Edwin's internal procedure %make-command. %make-command creates a command
structure, but does not register it in Edwin's table of named commands. The
name of an anonymous command, which must be a string, is a particular string
constant that serves to identify it as an anonymous command. The interactive
specification of an anonymous command is a procedure that. returns the original

Emacs Lisp keymap datum that was converted into this anonymous command.
This serves two purposes. First, the lookup-key subr. recognizing an anonymous
command by its name, can convert the command back into the original keymap
datum simply by invoking the interactive specification procedure. Second, Edwin's
command dispatch mechanism will invoke the interactive specification procedure
and apply the command's procedure to the returned value - the keymap datum.
The anonymous command's procedure will be %keymap-dispatch, a procedure
which, when applied to a keymap datum, emulates Emacs's dispatching behavior.

3.7 Modes

In Emacs, a buffer's mode is defined im-plicitly by mode-related state variables -
the buffer-local keymap and the buffer-local values of symbols like major-mode
and mode-name. In Edwin, a buffer has an explicit, major mode - a. structure that



30 3 REFLECTING EMACSS STATE IN EDIVIN

includes fields called comtabs, name, and display-name. Edwin uses the values of
these fields in much the same way as Emacs uses its mode-related state. Therefore.
the mode-related state of an Emacs buffer needs to be reflected in the major mode
of the corresponding Edwin buffer.

All procedures that emulate Emacs's manipulation of mode-related state first
apply guarantee-elisp-mode! to the current buffer. This procedure ensures that
the buffer's major mode is an Emacs Lisp mode - a major mode reflecting Emacs
Lisp's notion of the buffer's mode. These major mode objects are only used by one
buffer, so that the fields of the structure are buffer-specific. guarantee-elisp-
mode! can tell that a buffer's major mode is an Emacs Lisp mode by looking for
a particular property in the major mode's alist field. If the property is missing,
the major mode is a normal Edwin major mode and must be replaced by a new
Emacs Lisp mode.

The fields of a new Emacs Lisp mode are initialized to reflect a buffer in
Emacs's fundamental-mode with no local keymap. The comtabs field of the ma-
jor mode structure is initialized to a list of one comtab - the comtab of Edwin's
Fundamental mode. This comtab is used to represent Emacs's global keymap since
it is inherited by most of Edwin's major modes and has many of the same bindings.

Edwin major modes are normally uniquely named, making them easy to refer-
ence. However, Emacs Lisp modes are never referenced except. implicitly through
their associated buffer, and inventing unique names for them would be difficult.
Like the anonymous commands wrapping Emacs keymap data, Emacs Lisp modes
are anonymous major modes; they are not entered into Edwin's table of major
modes.

The major-mode and mode-name variables are implemented by generic sym-
bols whose set-value hooks apply guarantee-elisp-mode! to the current buffer
and then modify the fields of the Emacs Lisp mode. Similarly, the procedures im-
plementing Emacs's use-local-map and kill-all-local-variables subrs apply
guarantee-elisp-mode! to the current buffer and then modify the list of comtabs
of the Emacs Lisp mode. Thus, these procedures force the current buffer to become
an Emacs-style buffer with an Emacs Lisp mode. This seems reasonable because
most Emacs Lisp programs do not take these actions outside of functions intended
to initialize the mode of a buffer created by the programs.

The get-value hooks of the maj or-mode and mode-name symbols can handle a
current buffer that is either a normal Edwin buffer or an Emacs-style buffer. They
simply access the appropriate fields of the current, buffer's major mode regardless
of its type. The current-local-map primitive just returns nil for Edwin buffers.
Thus. Emacs Lisp code can inspect the modes of normal Edwin buffers without
forcing them to become Emacs-style buffers.

It is interesting to note that Edwin minor modes can still be used in Emacs-
style buffers. The comtabs of the minor modes are still prepended to the list of the



3.8 Prompting and Completion 31

buffer's applicable comtabs. Newly enabled Edwin minor modes will still override
all other command key bindings, even those of Emacs's local keymap. Whether
this feature will prove useful remains to be seen.

3.8 Prompting and Completion

The basis for Emacs's minibuffer input and completing behavior is a function and
the values of a few symbols. The C function read-minibuf is used by all of the
prompting subrs to implement the kernel functionality, such as saving the window
configuration, activating the minibuffer window with a, prompt and keymap, and
starting the recursive edit loop. Completion is provided by command key dispatch
in the minibuffer, which uses the minibuffer's keymap to map certain command
keys to completion functions. The completion functions get the information they
need from the values of three symbols:

"* The value of minibuffer-completion-table should be an obarray (which
associates strings with symbols) or an alist (specifically, an alist that asso-
ciates strings with arbitrary objects). The keys of either kind of association
include the possible completions of the minibuffer input.

"* The value of minibuffer-completion-predicate should be a predicate
used to filter the keys of minibuffer-completion-table. Together. the
values of these two symbols determine the possible completions.

"* The value of minibuffer-completion-confirm should indicate whether
completions must be displayed and confirmed before being accepted. If the
value of this symbol is nil, the unique prefix of a possible completion will be
accepted without displaying the entire string and asking for confirmation.

Edwin's minibuffer input and completion behavior is implemented in a. similar
fashion. Its internal procedure, %prompt-for-string, does essentially the same
work as read-minibuf, activating the minibuffer with a specialized major mode.
The comtabs of the major mode provide the normal editing commands plus a few
completion commands. The completion commands get the information they need
from the values of three Scheme variables:

"* The value of completion-procedure/complete-string should be a proce-
dure that can complete a string.

"* The value of completion-procedure/list-completions should be a pro-
cedure that, can list. the completions of a string.

" The value of completion-procedure/verify-final-value? should be a
predicate indicating whether a. string is an acceptable final value even if it is
not unique.



32 3 REFLECTING EAIACS'S STATE IN EDWIN

9 The value of *completion-confirm?* indicates whether completions shouhl
be displayed and confirmed before being accepted.

The emulator can easily find the appropriate values to fluid-bind to the Scheme
variables. The values of the completion procedure variables can be simple proce-
dures that use the try-completion or all-completions subrs together with the
values of the Emacs Lisp symbols to complete the input string or to find a list of all
its completions. The value of the *completion-confirm?* variable is also easily
computed, using the value of the Emacs Lisp symbol minibuffer-complet ion-
confirm.

The mode to be used by %prompt-f or-string is a little more difficult to pro-
duce. Most of the minibuffer input subrs call read-minibuf with the values of
certain Emacs Lisp symbols, which are typically standard keymaps. However,
the symbols' values could be set to anything by the user, or even temporarily
lambda-bound by Emacs Lisp code. Also, the read-f rom-minibuffer subr calls
read-minibuf with a keymap provided as an argument. The minibuffer input
subrs, therefore, must be emulated by procedures calling %prompt-for-string
with a mode whose comtabs are: an arbitrary comtab representing a keymap that
was a symbol value or direct argument, and the comtab representing Emacs's
global keymap.

The required mode is easy to construct on the fly and, like the anonymous ma-
jor modes of Emacs-style buffers, will not be registered as a named mode, allowing
it to be garbage collected after its brief use during the call to %prompt-f or-string.
However, the required mode is often already represented by existing Edwin major
modes. The values of the Emacs Lisp symbols used by the minibuffer input subrs
are typically standard keymaps. These standard keymaps are represented by the
comtabs of standard Edwin minibuffer modes. Rather than construct an anony-
mous mode on the fly, these comtabs are recognized and the standard modes are
used. The keymap->mode procedure implements this mapping, returning either a
standard Edwin minibuffer mode or a newly constructed anonymous mode.



33

4 Compatibility Issues

The techniques described in Section 3 address the two goals of accurately emulating
the Emacs Lisp primitives, and tightly integrating the Emacs Lisp and Edwin
Scheme environments. However, complete and accurate emulation and integration
were not possible given the available resources. The size and complexity of the
Emacs Lisp runtime system required that a number of Emacs Lisp primitives be
left unimplemented. Of the primitives that have been implemented, many have
capabilities that are rarely used and would not have been worth the effort to
accurately implement. Some capabilities are simply not implemented, but others
were replaced with useful approximations.

Complete and accurate integration is also difficult to achieve, both because
of the size of the Emacs Lisp runtime system and because some aspects of the
runtime system's state are difficult to reflect in analogous Edwin Scheme state.
In any case, tight integration is more a convenience than a necessity; it does not,
increase the number of Emacs Lisp programs that can be emulated.

Users who expect all of the functionality of Emacs Lisp to be available or all
analogous aspects of Emacs Lisp and Edwin Scheme state to be integrated will be
disappointed. To set realistic expectations, this section describes the limitations of
the Emacs Lisp emulator. It discusses both the general principles that guided the
selection of compromises, and specific deficiencies that can lead to errors during
emulation. This will help users understand why an Emacs Lisp program may be
encountering errors, and will also point out the areas where the current system
could be improved.

4.1 Signaling Errors

A couple caveats about the Emacs Lisp emulator concern how error situations are
handled. Edwin Scheme code uses the MIT-Scheme condition system to signal
error conditions, whereas Emacs Lisp uses its own mechanism. The emulated
subrs endeavor to indicate error situations by signaling the same Emacs Lisp errors
that would have been signaled by the original Emacs Lisp subrs in an analogous
situation. This allows for the correct operation of Emacs Lisp programs that were
designed to catch and handle these errors.

The emulated subrs accomplish this signaling behavior in a variety of ways.
They can usually adequately detect error situations via the same type checking
as that found in the original subrs. The type checking code can then signal the
correct Emacs error. Adequate type checking often eliminates the possibility of
Scheme errors being signaled by the Edwin Scheme procedures used to implement.
the subrs. In other cases, the emulated subrs may use Scheme condition handlers to
catch Scheme conditions signaled by the Edwin Scheme procedures. The handlers
can then signal the appropriate Emacs errors instead. However, it is difficult ,o



34 4 COMPATIBILITY ISSUES

anticipate all of the conditions that could be signaled by Edwin Scheme procedures,
so it is still possible for Scheme conditions to be signaled during the emulation of
an Emacs Lisp program. The obvious cases that correspond directly to the Emacs
errors signaled by the original Emacs Lisp subrs should be handled correctly.

One obvious case that currently is not handled is the quit error that is signaled
by Emacs when it gets the interrupt character (?\C-g). This character is bound to
the keyboard-quit command in the global keymap, but Emacs's handling of ?\C-g
is more complicated than simple command key dispatch, and involves at least the
values of two symbols. Edwin's own handling of ?\C-g is no less complicated, using
a mechanism entirely separate from the normal Scheme condition system. While
it is probably possible to more accurately emulate the interruption of Emnacs Lisp
code by ?\C-g, this has not been done. There are likely to be few Emacs Lisp
programs that rely on this behavior anyway.

The emulator will correctly implement the error signaling and handling behav-
ior of Emacs Lisp in most situations. However, there are a few situations in which
Emacs Lisp errors will be signaled by the emulator though they would not have
been signaled in Emacs. These errors reveal deficiencies in the emulator. A sim-
ple example is an Emacs Lisp program that attempts to call a subr that has not
been implemented. The attempt will cause a void-function Emacs error to be
signaled. This error will indicate to the user what went wrong in a fairly straight-
forward fashion. A less straightforward error is generated when an Emacs Lisp
program violates one of the restrictions imposed by the emulator. For example, an
Emacs Lisp program might attempt to cdr down a sparse keymap (i.e. traverse the
keymap using cdr). This violates the restriction that, only the abstract keymap
operations be applied to keymaps. The result is that the cdr subr will signal an
Emacs Lisp wrong-type-argument error because the sparse keymap is not a cons,
but actually an Edwin comtab.

An Emacs Lisp program can also violate restrictions of the emulator and cause
a Scheme error condition to be signaled. This may be a consequence of using Edwin
editor variables to store the values of certain Emacs Lisp symbols. In Emacs Lisp,
the values of most symbols can be any object. This includes symbols for whom only
a few values make sense, such as symbols that are conceptually boolean valued.
An Emacs Lisp program is free to set the value of such a symbol to be nil or any
non-nil value. For example. an Emacs Lisp program could set the buffer-local
value of buffer-read-only to a string describing why the buffer should not, be
modified.

Setting some Emacs Lisp symbols to unusual values can cause Scheme errors
to be signaled. Symbols with buffer-local values are emulated by i'ariabh symbol.s
which store their values as the values of similarly named Edwin editor variables.
Edwin editor variables can restrict the values to which they can be set. and will
signal a Scheme condition if a given value is outside their expected range. Thus,



4.2 Ignoring Deficiencies 35

an Emacs Lisp program that uses a buffer-local symbol in an unusual way may
cause an editor variable to signal a. Scheme condition. This should be rare because
only a few standard Edwin editor variables have restrictions on their values, and
these standard names are unlikely to be used in unusual ways by Emacs Lisp
programs. However, a few cases already exist among the standard Emacs Lisp
symbols that were implemented. Any restrictions imposed on these symbols by the
emulator have been documented in the standard symbols' documentation strings.
Section A.0.7 includes all documentation strings that were augmented with these
kinds of notes.

4.2 Ignoring Deficiencies

The Emacs Lisp emulator can signal errors whenever it is unable to correctly
emulate Emacs Lisp code, but this is often not what is desired. There are many
cases where a deficiency of the emulator can be ignored without grossly affecting
the behavior of an Emacs Lisp program.

For example, there is no analogue for Emacs's help-form symbol in Edwin, so
the emulator does not provide equivalent functionality. The emulator could signal
an error any time the symbol's value is referenced or set. This would help the user
understand why an Emacs Lisp program is not behaving exactly as expected, but
also makes it impossible to run the program even if it would run correctly in all
other respects. Instead, the emulator gives help-form an initial value and ignores
any attempt to change it. As a result, the program may be a little less helpful
than it could have been, but it won't halt with an error just because it references
or sets the value of help-form.

The same strategy applies when implementing subrs. The Emacs Lisp subr in-
teractive-p is supposed to return t only if it is called from the initial, interactive
invocation of an Emacs Lisp command. This is easy to implement in Emacs
because the subr can examine the interpreter stack. Doing the same thing in
Edwin Scheme is probably possible, but probably difficult. However, in the entire
GNU Emacs distribution, interactive-p is invoked in only 5 function calls, all
of which produce acceptable behavior if they always return t. Rather than leave
this subr undefined and halt any programs using it, the interactive-p subr is
emulated by always returning t.

When deficiencies in the emulation are not signaled, it becomes harder to track
down the source of discrepancies between a, program running in Emacs and the
same program being emulated in Edwin. An error resulting from a deficiency may
be far removed from the point, where the deficiency first, appeared. Backtracking
from the error to that, point is likely to be difficult. Therefore, the emulator will
only attempt to proceed with partially correct behavior where it is not. likely to
cause further trouble. Otherwise, an error will be signaled. In either case, the

known deficiencies of the emulated symbols and subrs are noted in their documen-



36 4 COMPATIBILITY ISSUES

tation strings. This will at least, make the user aware of the possible sources of
discrepancies.

4.3 Being Innocuous

Another general principle followed by the Emacs Lisp emulator is to be conservative
when reflecting the emulated Emacs Lisp system's state into Edwin. A reflection
that breaks Edwin is considered worse than the lack of a reflection that, defeats
integration or even introduces a discrepancy in the emulation. It is difficult to
guarantee that Edwin cannot be broken, but the following techniques have been
used to eliminate obvious problems.

This project emulates a large number of the Emacs Lisp primitives, but it does
not attempt to emulate the many functions provided in essential Emacs Lisp files.
These files define functions (e.g. not) needed by nearly all Emacs Lisp programs.
The files also define the global command key bindings. Since these essential files
are necessary to make most Emacs Lisp programs work, they must be loaded into
the emulation. However, if they were loaded in as they are, without modification,
they would override most of Edwin's global command key bindings. Many of its
editor variable values would be overridden too. To avoid the problem of overriding
the global command key bindings without patching (and maintaining patches to)
the essential Emacs Lisp files, a switch is provided that controls whether any
comtab bindings can be overridden. This switch, the Scheme variable allow-
elisp-define-key-overrides?, is fluid-bound to #f while the essential files are
loaded.

The defvar primitive by definition will not override existing variable values,
but the defconst primitive is defined to do just that. However, if defconst ex-
pressions in the essential Emacs Lisp files override existing Edwin editor variable
values, many of them will break Edwin. Fortunately, the defined behavior can
be compromised so as not to break Edwin. Variable symbols (symbols reflected
by Edwin editor variables) remember whether their corresponding editor variable
existed before they were created. If it did, the variable symbol assumes that the
editor variable is being used by Edwin and that its value should not be overridden
by defconst. defconst detects this situation when the %symbol-bound? opera-
tion returns the edwin symbol. If %symbol-bound? returns any other value, then
the symbol's value can be set: the symbol was either unbound or its editor variable
was created by the emulation code.

4.4 Handling Side-Effects

The Emacs Lisp emulator currently does not, go to great lengths to handle side-
effects to Emacs Lisp data structures. These side-effects need to be handled spe-
cially when they cause changes in state of an Emacs Lisp data structure and that



4.5 Naming Commands and Variables 37

state is being reflected in the state of an Edwin Scheme data, structure. To a large
extent, detecting and reflecting these state changes has been unnecessary because
of the large amount of data that, is actually shared between the two systems. Any
change in the state of shared data structures already affects both systems.

However, there are a, number of Emacs Lisp data structures that, are reflected
in Edwin Scheme via translation into a corresponding Edwin Scheme data struc-
ture. The translation is only applied when a data. structure is registered with the
Emacs Lisp runtime system by calling a subr or setting the value of a symbol.
The translation, a newly constructed Edwin Scheme data structure, is similarly
registered with the Edwin Scheme runtime system. Side-effects to the Emacs Lisp
data, structure will not invoke this translation process and register a new reflection
in the Edwin Scheme runtime system.

An example of this is the value of the exec-path symbol. The value of this
symbol should be a list of pathnames (strings) or nil. It is analogous to the
value of the Edwin editor variable exec-path. which is a list of pathname objects,
strings, or #f. The get-value method for the Emacs variable can easily coerce
the value of the Edwin variable to the correct type, mapping pathnames to strings
and #f to nil. However, the resulting list will be distinct (unless we want to force
the Edwin variable to share the new value). Any side-effects to it will not change
the state of the editor variable.

So far, this deficiency in the emulation has not been a problem. Side-effects to
many data structures, while possible, are unusual in Emacs Lisp programs. For
example, most programs will change a symbol's variable-documentation prop-
erty via the put subr, rather than via direct modification of the symbol's property
list. The put subr will detect the change and can reflect it as a new documenta-
tion string for a corresponding Edwin editor variable. The direct modification of
the property list will not be detected and the documentation string of the editor
variable will not reflect the new state.

As a possible source of bugs, unhandled side-effects are noted in appropriate
documentation strings. In the future, Emacs Lisp lists might be built out of special
cons cells that accept notification hooks. Then, any side-effects to an Emacs Lisp
list could trigger code that reflects the new state of the list into a corresponding
Edwin Scheme data structure. Practical experience with the current emulator
can focus such efforts to handle side-effects that are crucial to useful Emacs Lisp
programs.

4.5 Naming Commands and Variables

The Emacs Lisp emulator does its best to reflect the commands defined by Emacs
Lisp programs in corresponding Edwin commands with the same name. Users can
then easily invoke an Emacs Lisp command simply by invoking the corresponding
Edwin command. The Emacs Lisp command name can be used to bind command



38 4 COMPATIBILITY ISSU ES

keys to the corresponding Edwin command, and the same name can be provided
to the M-x command (execute-extended-command). The Emacs Lisp commands
will even appear in the completion lists displayed by execute-extended-command.

The same close integration is intended for Emacs Lisp variables, the symbols
whose global or buffer-local values parameterize the behavior of Emacs Lisp pro-
grams. The names of corresponding Edwin editor variables should be the same so
that users can easily inspect and set the values of the Emacs Lisp variables via
operations on the Edwin editor variables.

Unfortunately, Emacs Lisp symbol names are case-sensitive and they are unique
to a particular symbol only among symbols in the same obarray. An uninterned
symbol, or a symbol interned in another obarray could have the exact same name
as another symbol. The names of Edwin commands and editor variables, how-
ever, are case- insensitive and must be unique among all commands or variables
(respectively).

A straightforward mapping of Emacs command names to Edwin command
names would just lowercase the Emacs command names, but this can catfse con-
flicts when distinct symbols naming different commands are mapped to the same
Edwin command name. The same problem exists when mapping Emacs variable
names to Edwin editor variables names. Two distinct symbols may end up trying
to store their global or buffer-local values as the values of the same editor variable.

A more complex mapping of distinct symbols to uniquc Edwin command or
variables names is not likely to be easy to use. Luckily, the practice of naming
Emacs commands and variables with uppercase letters is rare, and the name con-
flicts that would be caused by the straightforward mapping are even rarer. For
now, the emulator uses the straightforward mapping and risks conflicts between
Emacs variables. Name conflicts between distinct, Emacs commands are arbitrarily
decided in favor of the command first defined - the Emacs symbol naming the
command will be associated with an Edwin command that invokes that symbol as
an Emacs command. The decision in favor of the first, command defined is actu-
ally a consequence of being innocuous. The emulator will not. re-define an existing
Edwin command to invoke an Emacs command.

The mapping between Emacs commands and Edwin commands is not. one-
to-one for another reason. Function aliasing makes it. hard to find new named
commands that aught to be reflected as an Edwin command. If the function of
an Emacs symbol is set to be another symbol. then the first symbol serves an an
alias for the function named by the second symbol. If the second symbol becomes
the name of a command, then the first symbol becomes an alias for the named
command, but, there is currently no way to find that first, symbol again and to
reflect it as an Edwin command. As with the name conflicts described above, the
named command aliases that would be lost. by this particular sequence of definitions
are thought to be rare in practice. and no effort. has been made to eliminate the



4.6 Using Comtabs For Kevmaps 39

problem.

4.6 Using Comtabs For Keymaps

As described in Section 3.6, Emacs Lisp keymaps are represented by Edwin Scheme
comtabs. At an abstract level, this representation is a good fit because the behav-
iors of keymaps and comtabs are very similar. Implementing the abstract keymap
operations like def ine-key and lookup-key in terms of operations on comtabs was
fairly straightforward, and integrating keymaps and comtabs helped to integrate
Emacs's and Edwin's command key dispatching mechanisms.

At a more concrete level, a full keymap is supposed to be represented by a
vector, and a sparse keymap by a pair whose car is the symbol keymapand whose
cdr is an association list. Emacs Lisp programs are supposed to be able to apply
vector operations to full keymaps and list operations to sparse keymaps. How-
ever, emulating these operations., when applied to an Edwin comtab representing
a keymap, would be difficult. Instead, the emulator imposes the restriction that
only the abstract keymap operations be applied to the emulated keymaps. This
restriction was thought to be acceptable to many useful Emacs Lisp programs, and
has proven acceptable to the benchmark GNUS news reader.

One notable exception to the restriction is the standard Emacs Lisp function
suppress-keymap, which uses aset to modify a full keymap (vector). This func-
tion is widely used, so to accommodate it, the aset subr is implemented so that
it can be applied to a comtab to produce the same key binding as it would have
produced when applied to a full keymap in Emacs.

4.6.1 special keys

Even when restricted to the supported, abstract operation on keymaps, there are
some fundamental differences between Edwin comtabs and Emacs's keymaps that
can cause errors in Emacs Lisp code. Edwin command keys are lists of arbitrary
objects, which are usually Scheme characters and sometimes other objects rep-
resenting special keys (e.g. function keys). Emacs command keys are strings of
ascii characters. Special keys are encoded as escape sequences via a mapping that
is terminal-dependent. Emacs Lisp code that tries to manipulate command key
bindings involving function keys (e.g. by using the escape sequence produced by a
commonly used terminal) will not work.

This difference between comtabs and keymaps also affects the emulation of the
this-command-keys subr. In the simple case. this-command-keys uses Edwin's
current-command-key procedure to get the command key sequence that most
recently invoked a command. The Edwin command key sequence (a list of char-
acters) is easily converted into an Emacs command key sequence (a string) which
is returned. If the command key sequence includes a special key, the special key



40 4 COMPATIBILITY ISSUES

is be converted to a string containing the name of the special key with a prefix of
\e [ and suffix of -. This will be meaningless to a program that really understands
escape sequences, but will work with programs that just compare them. If the
command key sequence includes anything else, the emulation gives up and signals
an error.

4.6.2 esc-map

Another difference between comtabs and keymaps concerns how they handle com-
mand keys with the meta-bit set. Emacs converts a command key with the meta-bit
set into two command keys - the ESC key and the original command key with the
meta-bit clear. Edwin does just the opposite. The ESC command key is bound to
a command that sets the meta-bit on the next command key. The result is that
Edwin does not have a comtab that corresponds to Emacs's esc-map. Emacs Lisp
code that tries to modify the esc-map or build a keymap to bind to ESC will not
work.

4.7 Integrating Essential Emacs Lisp Facilities

This project has implemented a number of Emacs Lisp subrs and variables, con-
centrating on those required by the benchmark GNUS program. This program
also requires a number of standard Emacs Lisp functions and variables defined in
the essential Emacs Lisp files that are pre-loaded into every Emacs. These files are
loaded into the emulated Emacs Lisp environment, but the functions and variables
they define have not been integrated with the Edwin Scheme environment.

This can be a problem when Emacs Lisp variables have the same name as
existing Edwin editor variables. By default, the values of the Emacs Lisp vari-
ables are reflected as the values of the Edwin editor variables and vice versa. No
translation is currently done between Emacs Lisp and Edwin Scheme data types.
When the values expected of the Emacs Lisp variables are not compatible with
the values expected of the Edwin editor variables, errors can result. For example,
find-file-hooks is both an Emacs Lisp variable and an Edwin editor variable,
but its value is a list in Emacs Lisp and an event distributor in Edwin Scheme.
Emacs Lisp code that tries to examine the value of find-file-hooks using the
car subr will halt with an error.

Eventually, the Emacs Lisp variables like find-file-hooks can be emulated
by generic symbols, just as other primitive Emacs Lisp variables are emulated now.
Alternatively, Edwin data types like event distributors might be manipulated (in
limited ways) by Emacs Lisp subrs as though they were native data types, just as
comtabs are manipulated in limited ways as though keymaps.



4.8 Miscellaneous Other Discrepancies 41

4.8 Miscellaneous Other Discrepancies

The preceding sections describe a number of caveats about the emulated Emacs
Lisp runtime system, and general issues about the compatibility of the emulated
environment with the original environment provided by Emacs. The compatibility
issues have been illustrated by a few examples of the specific incompatibilities can
arise, but these examples were not exhaustive. There are additional incompatibil-
ities that may be instances of the general issues, special-purpose compromises, or
combinations of both. For completeness, the appendix lists all of the primitives,
indicating their implementation status. It also includes all documentation strings
that note any restrictions or other unusual behaviors anticipated in specific Emacs
Lisp primitives. This section deals with the special-purpose compromises in the
implementation of specific Emacs Lisp primitives.

4.8.1 mode-line-format

Edwin's mode-line-format editor variable can be bound to values that will be
interpreted in almost exactly the same way that Emacs interprets the values of its
own mode-line-format symbol. The effect of setting the Emacs symbol to certain
values can therefore be emulated by setting the Edwin editor variable to similar
values. The translation from an Emacs value to a similar Edwin value would have
to take into account not only a few minor differences in the meanings of the V.-
constructs, but also a more troublesome difference - the fact that Emacs symbols
can appear in the Emacs value where Edwin editor variables would be expected in
the Edwin value. This difference is troublesome because the values of the editor
variables or Emacs symbols are in turn interpreted as though values of mode-line-
format (with an egregious exception). Thus, a faithful emulation must not only
translate Emacs Lisp values of mode-line-format substituting editor variables for
Emacs symbols or vice versa, it must also arrange that the values of any of the
referenced editor variables or Emacs symbols be similarly translated. Even if this
is accomplished, there is the additional problem of side-effects to the values of any
of the symbols or editor variables involved.

A partially correct emulation was found to be sufficient to get GNUS working,
and should be acceptable to many other Emacs Lisp programs. Emacs's mode-
line-f ormat symbol is emulated by a generic symbol. The get-value hook of
the generic symbol returns a copy of the value of the Edwin editor variable mode-
line-f ormat. The copy substitutes Edwin editor variables with freshly interned
Emacs symbols. The set-value hook of the variable symbol is similar. It sets the
Edwin editor variable to a copy of the given value in which any Emacs symbols
were replaced with corresponding Edwin editor variables. Also, the Emacs symbols
are made into variable symbols so that changes in their values will be reflected in
changes to the values of the corresponding editor variables, though no special



42 4 COMPATIBILITY ISSUES

translations are done on the values of these symbols.
This is a good example of a situation in which a small change to Edwin could

eliminate a compatibility issue. If Edwin allowed a buffer's mode line to be com-
puted by an arbitrary procedure. the emulator could specify a procedure that cor-
rectly interprets the value of the Emacs Lisp mode-line-format symbol. Whether
or not the Edwin Scheme mode-line-format editor variable was eliminated, there
would be no need to reflect the value of the Emacs Lisp mode-line-format symbol
in Edwin.

4.8.2 this-command and last-command

The Emacs Lisp symbol this-command is represented by a generic symbol whose
operation hooks use Edwin's command message facility. If an appropriate message
was not left by the set-value hook since the current command was dispatched,
then the get-value hook returns Edwin's (current-command) (an Edwin com-
mand object) as a last resort. However, the emulation arranges to set the value
of this-command whenever an Emacs command is called interactively. Thus, the
unusual value of this-command will only be observable outside the dynamic scope
of an Emacs command invocation. e.g. while a hook is being run, such as a process
filter function or a find-file-hook.

The Emacs Lisp symbol last-command is emulated in a similar fashion. Using
Edwin's command message facility, the get-value hook will return the value to
which this-command was set during the previous command, or else an Edwin
command object. This is sufficient to allow Emacs commands to recognize that
a related command was invoked just previously, or that they have been invoked
multiple times in succession. Thus, commands that work like Emacs's yank and
yank-pop commands are supported.

4.8.3 local-set-key

The Emacs primitive local-set-key is supposed to find or create a local keymap
for the current buffer and add a command key binding to it. However. an Ed-
win buffer does not have a local keymap unless it is an Emacs-style buffer. For
simplicity, the emulation of local-set-key changes the current buffer into an
Emacs-style buffer (if necessary), creates a local keymap for the buffer (if neces-
sary). and creates a comtab binding that reflects the intended keymap binding.
This is a rather drastic action. Changing an Edwin buffer into an Emacs-style
buffer leaves it in a mode comparable to Emacs's Fundamental mode. The Emacs
Lisp code may not have intended to make any major change in the current buffer's
mode, but simply to enhance the existing mode with a convenient binding.



4.8 Miscellaneous Other Discrepancies 43

4.8.4 process-status-message

Edwin's process-status-message is a reasonable facsimile of the Emacs subr
with the same name. However, to describe a signal that interrupted or killed a
subprocess, Emacs uses the corresponding string from the C array sys.siglist.
This is a descriptive string like "bus error". The Edwin procedure just gives the
signal number (e.g. 10 for a bus error) and notes when core has been dumped.

4.8.5 substitute-command-keys

When Emacs commands are defined, they are often given documentation strings
intended to be displayed to the user only after the substitute-command-keys
subr has been applied to them. This subr will recognize certain substrings of the
documentation string as directives that need to be replaced. The most common
directive names a related command and is replaced by the command key sequence
that invokes that command. The resulting string shows the user how to invoke
related commands using the short command key sequences instead of the much
longer command names.

The same feature is implemented in Edwin, which applies its own substi-
tute-command-keys procedure to substitute command names with command key
sequences. Unfortunately, the Edwin procedure is not compatible with the Emacs
subr. Not all of the directives recognized by the Emacs subr are recognized by
the Edwin procedure. The peculiarities of the comtabs constructed by Emacs Lisp
code also make it likely that command key sequences that invoke some of the
related commands will not be found. When this happens, the directives that could
not be replaced by command key sequences will be replaced instead by a default
string indicating that the execute-extended-command (M-x) command can be
used instead. This is only true when the Emacs command is accurately reflected
in an Edwin command with the same name.

The emulated substitute-command-keys subr will interpret all of the direc-
tives found in the documentation strings of Emacs commands, and will return a
string with the intended substitutions. Unfortunately, there is no hook in Ed-
win that would allow the emulated subr to be used instead of the Edwin proce-
dure. Thus, the Edwin commands that are created to reflect. Emacs commands are
given the documentation strings that result from applying the subr to the original
Emacs documentation string. The command key sequences described in the re-
sulting string may become out-of-date, but they are still more likely to be correct.
Again, this is a case where an appropriate hook added to Edwin could eliminate a
compatibility issue.



4 • 4 COMPATIBILITY ISSUES



45

5 Conclusion

This project was intended as a small step towards the ultimate goal of running
any Emacs Lisp program in the Edwin Scheme environment. This ultimate goal
requires that all of the hundreds of functions and variables provided by the Emacs
Lisp runtime environment, be emulated and integrated with the analogous facilities
of the Edwin Scheme environment. It was obvious that the ultimate goal could
not be realized given the limited resources of this project, but a useful step toward
this goal could be made.

To ensure that the actual goal of this project would be useful, a valuable Emacs
Lisp program, the GNUS news reader, was chosen as a benchmark. The actual goal
of the project would be to emulate enough of the Emacs Lisp runtime system, and
to integrate enough of Edwin Scheme with the emulated system, that the basic
facilities of the GNUS news reader could be used as though the program were
a native Edwin program. By focusing on this specific program, only a fraction
of the Emacs Lisp runtime facilities would have to be implemented. By choosing
such a sophisticated program, enough of the essential runtime facilities would need
to be implemented that it would then be likely that other Emacs Lisp programs
could be made to work given small, incremental improvements to the emulated

environment.
In spite of the ultimate goal, and the efforts made to integrate the emulated

Emacs Lisp runtime environment with the Edwin Scheme environment, these are
still really two separate worlds. The buffers being used by Emacs Lisp code are un-
usual in a number of ways. The major modes of these buffers are anonymous. The
comtabs of these major modes contain anonymous commands. Because of this,
the normal Edwin commands for examining a buffer's state ma" yield strange re-
sults. For example: the Edwin command describe-bindings, when invoked in
an Emacs-style buffer, may show many command key sequences bound to com-
mands named ?? - the anonymous commands of the Emacs Lisp emulator. This
kind of output is less informative than it could be. In the Emacs Lisp world,
the describe-bindings subr would recognize the anonymous commands of the
Emacs Lisp emulator and know how to find the original name of the Emacs Lisp
command. Its output would reveal the names of the bound commands as they are
known in the emulated Emacs Lisp environment, and these names could be used
when creating bindings in Emacs Lisp keymaps or when using execute-extended-
elisp-command, the Emacs Lisp version of Edwin's execute-extended-command
command.

Integration of the Emacs Lisp and Edwin Scheme environments is really just a
convenience. By integrating variables like fill-column, the user is saved the chore
of maintaining the consistency of two representations of what are conceptually the
same thing. By integrating the user interfaces (the windows, mode lines, and
command dispatch mechanisms) of the emulated Emacs Lisp and native Edwin



46 5 CONCL (tSION

Scheme systems, the user is saved from the disruption of switching between two
slightly different interfaces. Where integration breaks down, the user will have to
recognize that there are really two worlds, and will have to operate on the emulated
Emacs Lisp world using the commands and functions native to that world.

Some of the incremental improvements that may be necessary in order to run
other Emacs Lisp programs have already been demonstrated by the current. system.
There are many aspects of the Emacs Lisp runtime system that have not been
integrated into Edwin. In particular, the functions and variables defined by the
essential Emacs Lisp files (see Section 4.7) have not been addressed by this project.
By default, Emacs Lisp user variables will share state with a, similarly named Edwin
editor variable. Where this default behavior causes problems, the user may be able
to integrate incompatible representations of similar state following the example of
the current emulator code. Generic symbols have been a powerful tool for arranging
arbitrary translations between representations, and Edwin often supports equally
powerful hooks.

Many of the incompatibilities discussed in Section 4 are reasonable restrictions
for the Emacs Lisp system. A program that sets fill-column to a negative or non-
integer is probably in error anyway. Other incompatibilities may be eliminated by
more sophisticated use of the existing techniques. Such efforts may simply have
been deemed impractical given the resources of this project. Some incompatibili-
ties may require new techniques, including those anticipated by the discussion in
Section 4. Emacs Lisp data types might be replaced by data structures that react
to side-effects by invoking hooks. Edwin Scheme data structures might also be
extended so that they react to side-effects. An Edwin Scheme process, such as
the displaying of a command's documentation string, might also support hooks
that customize that process. Finally, there are a number of features of Emacs
Lisp that Edwin does not currently support. Eliminating these incompatibilities
might involve implementing mode abbrev, horizontal scrolling, selective display,
and perhaps others.

Despite its limitations, this project has succeeded in emulating a large fraction
of Emacs Lisp's primitive functions and variables. Of the 587 primitive functions,
430 have been implemented. Of the 147 primitive variables, 88 have been imple-
mented. The actual goal of running the GNUS news reader has been accomplished
to the extent that articles can be fetched from the news server, displayed in an
Edwin window, and saved in files. The database recording the articles that have
been read is correctly maintained and can be edited with the usual GNUS com-
mands. All of this can be done by an average Edwin user who knows little more
than how to load the Emacs Lisp emulator into the Edwin Scheme system. The
same Emacs Lisp code used to load and configure the GNUS program in Emacs
can be used to load and configure it in Edwin. In terms of its basic functionality
(i.e. except for the more sophisticated commands such as those calling the Emacs



47

Lisp sendmail program), the GNUS news reader, its windows, buffers, and simple
commands, can be used as though GNUS were a native Edwin Scheme program.
The performance of the emulator has received only scant attention. However, the
GNUS program is currently only about 5 times slower than it is when run in its
native GNU Emacs environment. Chris Hanson, the author of Edwin, believes
that further performance testing and enhancement could allow the Emacs Lisp
emulator to rival the speed of the original GNU Emacs implementation.

The purpose of this document was to describe the techniques used to emulated
the Emacs Lisp world, and to integrate it with the Edwin Scheme world. The
purpose was also to enumerate the limitations of the current, emulator, and by so
doing indicate opportunities for future improvement. Hopefully, it has served to
set the expectations of users of the Emacs Lisp emulator. When they try loading
and executing Emacs Lisp programs, they should have the information they need
to recognize errors or other unusual behavior resulting from the limitations of
the current system. Such experiments can then focus efforts to eliminate these
limitations and move even closer to the ultimate goal.



4 5 CONCL USION



49

A The Primitives

This appendix contains an index of the Emacs Lisp primitive functions and vari-
ables. Each entry in the list starts with a letter indicating:

I The primitive has been implemented.

R The primitive has been implemented, but its behavior is restricted,
or even unsupported. Section A.0.7 shows the documentation strings
of these primitives, which include a note describing how (and if) the
primitive is supported by Edwin.

U The primitive is unimplemented.

The rest of the entry gives the name and type of the primitive, and the name
of the file in which it was implemented in the GNU Emacs distribution.

A.0.6 Index

I % (function in data.c)
I * (function in data.c)
I + (function in data.c)
I - (function in data.c)

I / (function in data.c)
I /= (function in data.c)
I 1+ (function in data.c)
I 1- (function in data.c)
I < (function in data.c)
I <= (function in data.c)

I = (function in data.c)
I > (function in data.c)
I >= (function in data.c)

U Control-X-prefix (function in keymap.c)
I abbrev-all-caps (variable in abbrev.c)
I abbrev-expansion (function in abbrev.c)

R abbrev-mode (variable in buffer.c)
I abbrev-st art -location (variable in abbrev.c)
I abbrev-start-location-buffer (variable in abbrev.c)
I abbrev-symbol (function in abbrev.c)
I abbrev-table-name-list (variable in abbrev.c)
I abbrevs-changed (variable in abbrev.c)

U abort-recursive-edit (function in keyboard.c)
I accept -process-output (function in process.c)



50 A THE PRIMITIVES

I accessible-keymaps (function in keymap.c)
I add-name-to-file (function in fileio.c)
I all-completions (function in minibuf.c)
I and (function in eval.c)
I append (function in fns.c)
I apply (function in eval.c)

U apropos (function in keyrnap.c)
I aref (function in data.c)
I arrayp (function in data.c)
I aset (function in data.c)
I ash (function in data.c)
I assoc (function in fns.c)
I assq (function in fns.c)
I atom (function in data.c)

R auto-fill-hook (variable in buffer.c)
U auto-save-interval (variable in keyboard.c)
I autoload (function in eval.c)

U backtrace (function in eval.c)
U backtrace-debug (function in eval.c)
I backward-char (function in cmds.c)
I backward-prefix-chars (function in syntax.c)
I barf-if-buffer-read-only (function in buffer.c)

U baud-rate (function in dispnew.c)
I beginning-of-line (function in cmds.c)

R blink-paren-hook (variable in cmds.c)
I bobp (function in editfns.c)
I bolp (function in editfns.c)
I boundp (function in data.c)

R buffer-auto-save-file-name (variable in buffer.c)
R buffer-backed-up (variable in buffer.c)
I buffer-enable-undo (function in buffer.c)
I buffer-file-name (variable in buffer.c)

R buffer-file-name (function in buffer.c)
I buffer-flush-undo (function in buffer.c)
I buffer-list (function in buffer.c)
I buffer-local-variables (function in buffer.c)
I buffer-modified-p (function in buffer.c)
I buffer-name (function in buffer.c)
IR buffer-read-only (variable in buffer.c)
I buffer-saved-size (variable in buffer.c)
I buffer-size (function in editfns.c)



51

I buffer-string (function in editfnis.c)
I buffer-substring (function in editfns.c)

R buffer-undo-list (variable in buffer.c)
I buff erp (function in data.c)
I bury-buffer (function in buffer.c)
I byte-code (function in bytecode.c)
I call-interactively (function in callint.c)

U call-last-kbd-macro (function in macros.c)
U call-process (function in callproc.c)
U call-process-region (function in callproc.c)
U capitalize (function in casefiddle.c)
U capitalize-region (function in casefiddle.c)
U capitalize-word (function in casefiddle.c)
I car (function in data.c)
I car-safe (function in data.c)

R case-fold-search (variable in buffer.c)
I catch (function in eval.c)
I cdr (function in data.c)
I cdr-safe (function in data.c)
I char-after (function in editfns.c)
I char-equal (function in editfns.c)
I char-or-string-p (function in data.c)
I char-syntax (function in syntax.c)
I char-to-string (function in editfns.c)
I clear-abbrev-table (function in abbrev.c)
I clear-visited-f ile-modtime (function in fileio.c)

U command-execute (function in keyboard.c)
U command-history (variable in callint.c)
U command-line-args (variable in emacs.c)
I commandp (function in eval.c)
I completing-read (function in minibuf.c)

R completion-auto-help (variable in minibuf.c)
I completion-ignore-case (variable in minibuf.c)
I completion-ignored-extensions (variable in dired.c)
I concat (function in fns.c)
I cond (function in eval.c)
I condition-case (function in eval.c)
I cons (function in alloc.c)
I consp (function in data.c)
I continue-process (function in process.c)

U coordinates-in-window-p (function in xllfns.c)



52 A THE PRIMITIVES

U coordinates-in-window-p (function in xfns.c)
I copy-alist (function in fns.c)
I copy-file (function in fileio.c)
I copy-keymap (function in keymap.c)
I copy-marker (function in marker.c)
I copy-sequence (function in fns.c)
I copy-syntax-table (function in syntax.c)

R ctl-arrow (variable in buffer.c)
U ctl-x-map (variable in keymap.c)
I current-buffer (function in buffer.c)
I current-column (function in indent.c)
I current-global-map (function in keymap.c)
I current-indentation (function in indent.c)
I current-local-map (function in keymap.c)
I current-prefix-arg (variable in callint.c)
I current-time-string (function in editfns.c)
I current -window-conf igurat ion (function in window.c)

U cursor-in-echo-area (variable in dispnew.c)
U debug-end-pos (variable in xdisp.c)
U debug-on-error (variable in eval.c)
U debug-on-next-call (variable in eval.c)
U debug-on-quit (variable in eval.c)
U debugger (variable in eval.c)
U default-abbrev-mode (variable in buffer.c)
R default -case-fold-search (variable in buffer.c)
R default-ctl-arrow (variable in buffer.c)
R default-directory (variable in buffer.c)
R default-fill-column (variable in buffer.c)
R default-left-margin (variable in buffer.c)
R default-major-mode (variable in buffer.c)
I default-mode-line-format (variable in buffer.c)

R default-tab-width (variable in buffer.c)
R default-truncate-lines (variable in buffer.c)
I default-value (function in data.c)
I defconst (function in eval.c)
I define-abbrev (function in abbrev.c)
I def ine-abbrev-t able (function in abbrev.c)
I define-global-abbrev (function in abbrev.c)
I define-key (function in keymap.c)
I define-mode-abbrev (function in abbrev.c)
I define-prefix-command (function in keymap.c)



53

1T def ining-kbd-macro (variable in macros.c)
I defmacro (function in eval.c)
I defun (function in eval.c)
I defvar (function in eval.c)
I delete-backward-char (function in cmds.c)

I delete-char (function in cmds.c)

R delete-exited-processes (variable in process.c)
I delete-file (function in fileio.c)

I delete-other-windows (function in window.c)

I delete-process (function in process.c)
I delete-region (function in editfns.c)

I delete-window (function in window.c)
I delete-windows-on (function in window.c)

I delq (function in fns.c)

I describe-bindings (function in keymap.c)
I describe-syntax (function in syntax.c)

I ding (function in dispnew.c)

I directory-file-name (function in fileio.c)
U directory-files (function in dired.c)
U disabled-command-hook (variable in keyboard.c)
(T discard-input (function in keyboard.c)

I display-buffer (function in window.c)

I display-completion-list (function in minibuf.c)

R do-auto-save (function in fileio.c)

U documentation (function in doc.c)

U documentation-property (function in doc.c)
IJ downcase (function in casefiddle.c)

U downcase-region (function in casefiddle.c)

U downcase-word (function in casefiddle.c)
U dump-emacs (function in emacs.c)

U dump-emacs-data (function in emacs.c)
tT echo-keystrokes (variable in keyboard.c)

I elt (function in fns.c)
R enable-recursive-minibuffers (variable in minibuf.c)

IT end-kbd-macro (function in macros.c)

I end-of-line (function in crnds.c)

I enlarge-window (function in window.c)

I eobp (function in editfns.c)

I eolp (function in editfns.c)

I eq (function in data.c)

I equal (function in fns.c)



54 A THE PRIMITIVES

I erase-buffer (function in buffer.c)
U esc-map (variable in keymap.c)
I eval (function in eval.c)
I eval-current-buffer (function in lread.c)
I eval-minibuffer (function in minibuf.c)
I eval-region (function in lread.c)

U exec-directory (variable in callproc.c)
R exec-path (variable in callproc.c)
U execute-extended-command (function in keyboard.c)
U execute-kbd-macro (function in rnacros.c)
U executing-kbd-macro (variable in macros.c)
U executing-macro (variable in macros.c)
I exit-minibuffer (function in niinibuf.c)

U exit-recursive-edit (function in keyboard.c)
U expand-abbrev (function in abbrev.c)
I expand-file-name (function in fileio.c)
I fboundp (function in data.c)
I featurep (function in fns.c)
I features (variable in fns.c)
I file-attributes (function in dired.c)
I file-directory-p (function in fileio.c)
I file-exists-p (function in fileio.c)

U file-locked-p (function in filelock.c)
I file-modes (function in fileio.c)
I file-name-absolute-p (function in fileio.c)
I file-name-all-completions (function in dired.c)
I file-name-as-directory (function in fileio.c)

U file-name-completion (function in dired.c)
I file-name-directory (function in fileio.c)
I file-name-nondirectory (function in fileio.c)
I file-newer-than-file-p (function in fileio.c)
I file-readable-p (function in fileio.c)
I file-symlink-p (function in fileio.c)
I file-writable-p (function in fileio.c)

R fill-column (variable in buffer.c)
I fillarray (function in fns.c)
I fmakunbound (function in data.c)
I following-char (function in editfns.c)
I format (function in editfns.c)
I forward-char (function in cmds.c)
I forward-line (function in crnds.c)



55

I forward-word (function in syntax.c)
I f set (function in data.c)
I funcall (function in eval.c)
I function (function in eval.c)
I fundamental-mode-abbrev-table (variable in abbrev.c)

R garbage-collect (function in alloc.c)
R gc-cons-threshold (variable in alloc.c)
I generate-new-buffer (function in buffer.c)
I get (function in fns.c)
I get-buffer (function in buffer.c)
I get-buffer-create (function in buffer.c)
I get-buffer-process (function in process.c)
I get-buffer-window (function in window.c)
I get-file-buffer (function in buffer.c)
I get-largest-window (function in window.c)
I get-lru-window (function in window.c)
I get-process (function in process.c)

U getenv (function in environ.c)
I getenv (function in editfns.c)
I global-abbrev-table (variable in abbrev.c)
I global-key-binding (function in keymap.c)

U global-map (variable in keymap.c)
U global-mode-string (variable in xdisp.c)
I global-set-key (function in keymap.c)
I global-unset-key (function in keymap.c)
I goto-char (function in editfns.c)

U help-char (variable in keyboard.c)
R help-form (variable in keyboard.c)
I identity (function in fns.c)
I if (function in eval.c)

R indent-tabs-mode (variable in indent.c)
I indent-to (function in indent.c)

U inhibit-quit (variable in eval.c)
I input-pending-p (function in keyboard.c)
I insert (function in editfns.c)

U insert-abbrev-table-descript ion (function in abbrev.c)
I insert-before-markers (function in editfns.c)
I insert-buffer-substring (function in editfns.c)
I insert-char (function in editfiis.c)
I insert-default-directory (variable in fileio.c)
I insert-file-contents (function in fileio.c)



56 A THE PRIMITIVES

U insert-string (function in mocklisp.c)
I int-to-string (function in data.c)
I integer-or-marker-p (function in data.c)
I integerp (function in data.c)
I interactive (function in callint.c)

R interactive-p (function in eval.c)
I intern (function in lread.c)
I intern-soft (function in lread.c)
I interrupt-process (function in process.c)

U inverse-video (variable in dispnew.c)
I key-binding (function in keymap.c)
I key-description (function in keymap.c)

U keyboard-translate-table (variable in keyboard.c)
I keymapp (function in keymap.c)
I kill-all-local-variables (function in buffer.c)
I kill-buffer (function in buffer.c)

U kill-emacs (function in emacs.c)
U kill-emacs-hook (variable in emacs.c)

I kill-local-variable (function in data.c)
I kill-process (function in process.c)
I last-abbrev (variable in abbrev.c)
I last-abbrev-location (variable in abbrev.c)
I last-abbrev-text (variable in abbrev.c)

R last-command (variable in keyboard.c)
U last-command-char (variable in keyboard.c)
U last-input-char (variable in keyboard.c)
IT last-kbd-macro (variable in macros.c)
R left-margin (variable in buffer.c)
I length (function in fns.c)
I let (function in eval.c)
I let* (function in eval.c)
I list (function in alloc.c)
I list-buffers (function in buffer.c)
I list-processes (function in process.c)
I listp (function in data.c)
I load (function in lread.c)

IT load-average (function in fns.c)
I load-in-progress (variable in lread.c)
I load-path (variable in lread.c)
I local-abbrev-table (variable in abbrev.c)
I local-key-binding (function in keymap.c)



57

I local-set-key (function in keymap.c)
I local-unset-key (function in keymap.c)

U lock-buffer (function in filelock.c)
I logand (function in data.c)
I logior (function in data.c)
I lognot (function in data.c)
I logxor (function in data.c)
I looking-at (function in search.c)
I lookup-key (function in keymap.c)
I lsh (function in data.c)
I macroexpand (function in eval.c)

R major-mode (variable in buffer.c)
I make-abbrev-table (function in abbrev.c)

R make-keymap (function in keyrnap.c)
I make-list (function in alloc.c)
I make-local-variable (function in data.c)

I make-marker (function in alloc.c)
R make-sparse-keymap (function in keymap.c)
I make-string (function in alloc.c)
I make-symbol (function in alloc.c)
I make-symbolic-link (function in fileio.c)
I make-temp-name (function in fileio.c)
I make-variable-buffer-local (function in data.c)
I make-vector (function in alloc.c)
I makunbound (function in data.c)
I mapatoms (function in lread.c)
I mapcar (function in fns.c)
I mapconcat (function in fns.c)
I mark-marker (function in editfns.c)
I marker-buffer (function in marker.c)
I marker-position (function in marker.c)
I markerp (function in data.c)
I match-beginning (function in search.c)
I match-data (function in search.c)
I match-end (function in search.c)
I max (function in data.c)

U max-lisp-eval-depth (variable in eval.c)
U max-specpdl-size (variable in eval.c)

I memq (function in fns.c)
I message (function in editfns.c)

U meta-f lag (variable in keyboard.c)



58 A THE PRIMITIVES

U meta-prefix-char (variable in keyboard.c)
I min (function in data.c)
I minibuffer-complete (function in minibuf.c)
I minibuffer-complete-and-exit (function in minibuf.c)
I minibuffer-complete-word (function in minibuf.c)
I minibuffer-completion-confirm (variable in minibuf.c)
I minibuffer-completion-help (function in minibuf.c)
I minibuffer-completion-predicate (variable in minibuf.c)
I minibuffer-complet ion-table (variable in minibuf.c)
I minibuff er-depth (function in minibuf.c)

R minibuff er-help-form (variable in minibuf.c)
I minibuffer-local-completion-map (variable in keymap.c)
I minibuffer-local-map (variable in keymap.c)
I minibuffer-local-must-match-map (variable in keymap.c)
I minibuffer-local-ns-map (variable in keymap.c)

U minibuff er-prompt-width (variable in window.c)
I minibuffer-scroll-window (variable in window.c)
I minibuff er-window (function in window.c)

U ml-arg (function in mocklisp.c)
U ml-if (function in mocklisp.c)
U ml-interactive (function in mocklisp.c)
U ml-nargs (function in mocklisp.c)
U ml-pref ix-argument-loop (function in mocklisp.c)
U ml-provide-prefix-argument (function in mocklisp.c)
U mocklisp-arguments (variable in eval.c)
R mode-line-format (variable in buffer.c)
U mode-line- inverse-video (variable in xdisp.c)
R mode-name (vr;.able in buffer.c)
I modify-syntax-entry (function in syntax.c)
I move-to-column (function in indent.c)
I move-to-window-line (function in window.c)
] narrow-to-region (function in editfns.c)
I natnump (function in data.c)
I nconc (function in fns.c)

R newline (function in cmds.c)
R next-screen-context-lines (variable in window.c)
I next-window (function in window.c)
I nlistp (function in data.c)

UI no-redraw-on-reenter (variable in dispnew.c)
I noninteractive (variable in emacs.c)
I nreverse (function in fins.c)



59

I nth (function in fns.c)
I nthcdr (function in fns.c)
I null (function in data.c)
I obarray (variable in lread.c)

U open-dribble-file (function in keyboard.c)
U open-network-stream (function in process.c)
U open-termscript (function in dispnew.c)
I or (function in eval.c)
I other-buffer (function in buffer.c)
I other-window (function in window.c)

U overlay-arrow-posit ion (variable in xdisp.c)
U overlay-arrow-string (variable in xdisp.c)
R overwrite-mode (variable in buffer.c)
I parse-partial-sexp (function in syntax.c)
I parse-sexp-ignore-comments (variable in syntax.c)
I point (function in editfns.c)
I point-marker (function in editfns.c)
I point-max (function in editfns.c)
I point-max-marker (function in editfns.c)
I point-min (function in editfns.c)
I point-min-marker (function in editfns.c)

U polling-period (variable in keyboard.c)
I pop-to-buffer (function in buffer.c)

R pop-up-windows (variable in window.c)
I pos-visible-in-window-p (function in window.c)
I preceding-char (function in editfns.c)
I prefix-arg (variable in callint.c)
I prefix-numeric-value (function in callint.c)
I previous-window (function in window.c)

U primitive-undo (function in undo.c)
I prini (function in print.c)
I prinl-to-string (function in print.c)
I princ (function in print.c)
I print (function in print.c)
I print-escape-newlines (variable in print.c)
I print-length (variable in print.c)
I process-buffer (function in process.c)
I process-command (function in process.c)

R process-connection-type (variable in process.c)
IT process -environment (variable in callproc.c)
I process-exit-status (function in process.c)



60 A THE PRIMITIVES

I process-filter (function in process.c)
I process-id (function in process.c)
I process-kill-without-query (function in process.c)
I process-list (function in process.c)
I process-mark (function in process.c)
I process-name (function in process.c)
I process-send-eof (function in process.c)
I process-send-region (function in process.c)
I process-send-string (function in process.c)
I process-sentinel (function in process.c)
I process-status (function in process.c)
I processp (function in process.c)
I progi (function in eval.c)
I prog2 (function in eval.c)
I progn (function in eval.c)
I provide (function in fns.c)

R pure-bytes-used (variable in alloc.c)
R purecopy (function in alloc.c)
R purify-flag (variable in alloc.c)
I put (function in fns.c)

U quit-flag (variable in eval.c)
I quit-process (function in process.c)
I quote (function in eval.c)

R random (function in fns.c)
I rassq (function in fns.c)
I re-search-backward (function in search.c)
I re-search-forward (function in search.c)
I read (function in lread.c)
I read-buffer (function in ininibuf.c)
I read-char (function in lread.c)
I read-command (function in minibuf.c)
I read-file-name (function in fileio.c)
I read-f rom-minibuffer (function in minibuf.c)
I read-from-string (function in lread.c)

U read-key-sequence (function in keyboard.c)
I read-minibuffer (function in minibuf.c)
I read-no-blanks- input (function in minibuf.c)
I read-string (function in minibuf.c)
I read-variable (function in minibuf.c)
I recent-auto-save-p (function in fileio.c)

U recent-keys (function in keyboard.c)



61

I recenter (function in window.c)
UT recursion-depth (function in keyboard.c)
U recursive-edit (function in keyboard.c)
U redraw-display (function in xdisp.c)
I regexp-quote (function in search.c)
I region-beginning (function in editfns.c)
I region-end (function in editfns.c)
I rename-buffer (function in buffer.c)
I rename-file (function in fileio.c)
I replace-buffer-in-windows (function in window.c)
I replace-match (function in search.c)
I require (function in fns.c)

U reset-terminal-on-clear (variable in xdisp.c)
I reverse (function in fns.c)
I save-excursion (function in editfns.c)
I save-restriction (function in editfns.c)
I save-window-excursion (function in window.c)
I scan-lists (function in syntax.c)
I scan-sexps (function in syntax.c)

U screen-height (function in dispnew.c)
U screen-width (function in dispnew.c)
I scroll-down (function in window.c)

U scroll-left (function in window.c)
I scroll-other-window (function in window.c)

U scroll-right (function in window.c)
U scroll-step (variable in xdisp.c)
I scroll-up (function in window.c)
I search-backward (function in search.c)
I search-forward (function in search.c)
I select-window (function in window.c)
I selected-window (function in window.c)

R selective-display (variable in buffer.c)
R selective-display-ellipses (variable in buffer.c)
I self-insert-and-exit (function in minibuf.c)
I self-insert-command (function in cmds.c)

U send-string-to-terminal (function in dispnew.c)
I sequencep (function in data.c)
I set (function in data.c)
I set-buffer (function in buffer.c)
I set-buffer-auto-saved (function in fileio.c)
I set-buffer-modified-p (function in buffer.c)



62 A THE PRIAIITIV7ES

I set-default (function in data.c)
I set-file-modes (function in fileio.c)

U set-input-mode (function in keyboard.c)
I set-marker (function in marker.c)
I set-process-buffer (function in process.c)
I set-process-filter (function in process.c)
I set-process-sentinel (function in process.c)

U set-screen-height (function in dispnew.c)
U set-screen-width (function in dispnew.c)
I set-syntax-table (function in syntax.c)
I set-window-buffer (function in window.c)
I set -window-conf igurat ion (function in window.c)

U set-window-hscroll (function in window.c)

I set-window-point (function in window.c)
I set-window-start (function in window.c)
I setcar (function in data.c)
I setcdr (function in data.c)

U setenv (function in environ.c)
I setplist (function in data.c)
I setq (function in eval.c)
I setq-default (function in data.c)

U shell-file-name (variable in callproc.c)
I shrink-window (function in window.c)
I signal (function in eval.c)
I single-key-description (function in keymap.c)
I sit-for (function in dispnew.c)

U sit-for-millisecs (function in sunfns.c)
I skip-chars-backward (function in search.c)
I skip-chars-forward (function in search.c)
I sleep-for (function in dispnew.c)

U sleep-f or-millisecs (function in sunfns.c)
I sort (function in fns.c)

R split-height-threshold (variable in window.c)
I split-window (function in window.c)

U stack-trace-on-error (variable in eval.c)
I standard-input (variable in Iread.c)
I standard-output (variable in print,.c)
I standard-syntax-table (function in syntax.c)

U start-kbd-macro (function in rnacros.c)
I start-process (function in process.c)
I stop-process (function in process.c)



63

I store-match-data (function in search.c)
I string-equal (function in fns.c)
I string-lessp (function in fins.c)
I string-match (function in search.c)
I string-to-char (function in editfns.c)
I string-to-int (function in data.c)
I stringp (function in data.c)
I subrp (function in data.c)
I subst -char- in-region (function in editfns.c)
I substitute-command-keys (function in doc.c)
I substitute-in-f ile-name (function in fileio.c)
I substring (function in fns.c)

U sun-change-cursor-icon (function in sunfns.c)
U sun-get-selection (function in sunfns.c)
U sun-menu-internal (function in sunfns.c)
U sun-set-selection (function in sunfns.c)
U sun-window-init (function in sunfns.c)
U suspend-emacs (function in keyboard.c)

I switch-to-buffer (function in buffer.c)
I symbol-function (function in data.c)
I symbol-name (function in data.c)
I symbol-plist (function in data.c)
I symbol-value (function in data.c)
I symbolp (function in data.c)
I syntax-table (function in syntax.c)
I syntax-table-p (function in syntax.c)
I system-name (function in editfns.c)
I system-type (variable in emacs.c)

R tab-width (variable in buffer.c)
I temp-buffer-show-hook (variable in window.c)
I terpri (function in print.c)
I text-char-description (function in keymap.c)

R this-command (variable in keyboard.c)
R this-command-keys (function in keyboard.c)
I throw (function in eval.c)

U top-level (variable in keyboard.c)
U top-level (function in keyboard.c)
R truncate-lines (variable in buffer.c)
11 truncate-partial-width-windows (variable in xdisp.c)
I try-completion (finction in minibuf.c)

U undo-boundary (function in undo.c)



64 A THE PRIMITIVES

R undo-high-threshold (variable in alloc.c)
R undo-threshold (variable in alloc.c)
U unexpand-abbrev (function in abbrev.c)
U unlock-buffer (function in filelock.c)
U unread-command-char (variable in keyboard.c)
I unwind-protect (function in eval.c)

U upcase (function in casefiddle.c)
U upcase-region (function in casefiddle.c)
U upcase-word (function in casefiddle.c)
U update-display (function in sunfns.c)

I use-global-map (function in keymap.c)
I use-local-map (function in keymap.c)

R user-full-name (function in editfns.c)
I user-login-name (function in editfns.c)
I user-real-login-name (function in editfns.c)
I user-real-uid (function in editfns.c)
I user-uid (function in editfns.c)
I user-variable-p (function in eval.c)
I values (variable in lread.c)
I vconcat (function in fns.c)
I vector (function in alloc.c)
I vectorp (function in data.c)
I verify-visited-f ile-modtime (function in fileio.c)

U vertical-motion (function in indent.c)
U visible-bell (variable in dispnew.c)
I vms-stmlf-recfm (variable in fileio.c)
I waiting-for-user-input-p (function in process.c)
I where-is (function in keymap.c)
I where-is-internal (function in keymap.c)
I while (function in eval.c)
I widen (function in editfns.c)
I window-buffer (function in window.c)
I window-edges (function in window.c)
I window-height (function in window.c)
I window-hscroll (function in window.c)

R window-min-height (variable in window.c)
R window-min-width (variable in window.c)
I window-point (function in window.c)
I window-start (function in window.c)

U window-system (variable in dispnew.c)
U window-system-version (variable in dispnew.c)



65

I window-width (function in window.c)
I windowp (function in window.c)
I with-output -to-temp-buffer (function in print.c)
I word-search-backward (function in search.c)
I word- search-forward (function in search.c)
I write-char (function in print.c)
I write-region (function in fileio.c)

U x-change-display (function in xfns.c)
U x-color-p (function in xfns.c)
U x-color-p (function in xllfns.c)
U x-create-x-window (function in xfns.c)
U x-debug (function in xllfns.c)
U x-debug (function in xfns.c)
U x-flip-color (function in xllfns.c)
U x-flip-color (function in xfns.c)
U x-get-background-color (function in xfns.c)
U x-get-background-color (function in xllfns.c)
U x-get-border-color (function in xfns.c)
U x-get-border-color (function in xllfns.c)
U x-get-cursor-color (function in xfns.c)
U x-get-cursor-color (function in xllfns.c)
U x-get-cut-buffer (function in xfns.c)
U x-get-cut-buffer (function in xllfns.c)
U x-get-default (function in xfns.c)
U x-get-default (function in xllfns.c)
U x-get-foreground-color (function in xfns.c)
U x-get-foreground-color (function in xllfns.c)
U x-get-mouse-color (function in xllfns.c)
U x-get-mouse-color (function in xfns.c)
U x-get-mouse-event (function in xfns.c)
U x-get-mouse-event (function in xllfns.c)
U x-mouse-abs-pos (variable in xfns.c)
U x-mouse-abs-pos (variable in xllfns.c)
U x-mouse-events (function in xllfns.c)
U x-mouse-events (function in xfns.c)
U x-mouse-item (variable in xfns.c)
U x-mouse-item (variable in xllfns.c)
U x-mouse-pos (variable in xfns.c)
U x-mouse-pos (variable in xllfns.c)
U x-pop-up-window (function in xfns.c)
IT x-popup-menu (function in xrnenu.c)



66 A THE PRIMITIVES

U x-proc-mouse-event (function in xllfns.c)
U x-proc-mouse-event (function in xfns.c)
U x-rebind-key (function in xfns.c)
U x-rebind-key (function in xllfns.c)
U x-rebind-keys (function in xfns.c)
U x-rebind-keys (function in xllfns.c)
U x-rubber-band (function in xfns.c)
U x-set-background-color (function in xfns.c)
U x-set-background-color (function in xllfns.c)
U x-set-bell (function in xfns.c)
U x-set-bell (function in xllfns.c)
U x-set-border-color (function in xllfns.c)
U x-set-border-color (function in xfns.c)
U x-set-border-width (function in xllfns.c)
U x-set-border-width (function in xfns.c)
U x-set-cursor-color (function in xfns.c)
U x-set-cursor-color (function in xllfns.c)
U x-set-font (function in xfns.c)
U x-set-font (function in xllfns.c)
U x-set-foreground-color (function in xllfns.c)
U x-set-foreground-color (function in xfns.c)
U x-set-icon (function in xfns.c)
U x-set - internal-border-width (function in xfns.c)
U x-set - internal-border-width (function in xllfns.c)
U x-set-keyboard-enable (function in xfns.c)
U x-set-mouse-color (function in xllfns.c)
U x-set-mouse-color (function in xfns.c)
U x-set-mouse-inform-flag (function in xfns.c)

U x-set-window-edges (function in xfns.c)
U x-store-cut-buffer (function in xllfns.c)
U x-store-cut-buffer (function in xfns.c)
I y-or-n-p (function in fns.c)
I yes-or-no-p (function in fns.c)
I zerop (function in data.c)



67

A.O.7 Documentation

This section lists the documentation strings of all Emacs Lisp primitives which were
implemented, but whose behavior is not completely emulated. The documentation
strings include notes explaining any restrictions or other unusual behaviors.

this-command

The command now being executed.

The command can set this variable; whatever is put here
will be in last-command during the following command.

NOTE: In Edwin, this-command is sometimes an Edwin command object.

last-command

The last command executed. Normally a symbol with a function definition,

but can be whatever was found in the keymap, or whatever the variable
'this-command' was set to by that command.

NOTE: In Edwin, last-command is often an Edwin command object.

this-command-keys

Return string of the keystrokes that invoked this command.

NOTE: Commands invoked by function keys will not get the usual

terminal-specific escape sequences.

help-form

Form to execute when character help-char is read.
If the form returns a string, that string is displayed.

If help-form is nil, the help char is not recognized.

NOTE: This variable is not supported by Edwin.



68 A THE PRIMITIVES

exec-path

*List of directories to search programs to run in subprocesses.

Each element is a string (directory name) or nil (try default directory).

NOTE: In Edwin, each element is a pathname or false. The get/set-value

methods of exec-path will translate from/to the Edwin exec-path. The

exec-path should not be side-effected withoutre-setting the symbol value
afterwards.

purecopy

Make a copy of OBJECT in pure storage.
Recursively copies contents of vectors and cons cells.

Does not copy symbols.

NOTE: In Edwin, this just does a deep copy of lists, strings, and vectors.

garbage-collect

Reclaim storage for Lisp objects no longer needed.

Returns info on amount of space in use:

((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)

(USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS)

Garbage collection happens automatically if you cons more than
gc-cons-threshold bytes of Lisp data since previous garbage collection.

NOTE: In Edwin, returns the number of free words in the heap. This

number is incompatible with the expected association list, so Emacs

programs examining the return value will signal an error.

gc-cons-threshold

*Number of bytes of consing between garbage collections.

NOTE: This variable is meaningless in Edwin.



69

pure-bytes-used

Number of bytes of sharable Lisp data allocated so far.

NOTE: This variable is meaningless in Edwin.

purify-flag

Non-nil means loading Lisp code in order to dump an executable.

NOTE: This variable is meaningless in Edwin.

undo-threshold

Keep no more undo information once it exceeds this size.

This threshold is applied when garbage collection happens.

The size is counted as the number of bytes occupied,

which includes both saved text and other data.

NOTE: This variable cannot be set in Edwin.

undo-high-threshold

Don't keep more than this much size of undo information.

A command which pushes past this size is itself forgotten.

This threshold is applied when garbage collection happens.

The size is counted as the number of bytes occupied,

which includes both saved text and other data.

NOTE: This variable cannot be set in Edwin.

default-ctl-arrow

Default ctl-arrow for buffers that do not override it.

This is the same as (default-value 'ctl-arrow).

NOTE: This variable can only be t in Edwin.



70 A THE PRIMITIVES

default-truncate-lines

Default truncate-lines for buffers that do not override it.
This is the same as (default-value 'truncate-lines).

NOTE: This variable can only be a boolean in Edwin.

default-fill-column

Default fill-column for buffers that do not override it.

This is the same as (default-value 'fill-column).

NOTE: This variable can only be an exact nonnegative integer in Edwin.

default-left-margin

Default left-margin for buffers that do not override it.

This is the same as (default-value 'left-margin).

NOTE: This variable can only be an exact nonnegative integer in Edwin.

default-tab-width

Default tab-width for buffers that do not override it.

This is the same as (default-value 'tab-width).

NOTE: This variable can only be an exact nonnegative integer in Edwin.

default-case-fold-search

Default case-fold-search for buffers that do not override it.

This is the same as (default-value 'case-fold-search).

NOTE: This variable can only be a boolean in Edwin.



71

mode-line-format

Template for displaying mode line for current buffer.

Each buffer has its own value of this variable.

Value may be a string, a symbol or a list or cons cell.

For a symbol, its value is used (but it is ignored if t or nil).

A string appearing directly as the value of a symbol is processed verbatim

in that the %-constructs below are not recognized.

For a list whose car is a symbol, the symbol's value is taken,

and if that is non-nil, the cadr of the list is processed recursively.

Otherwise, the caddr of the list (if there is one) is processed.

For a list whose car is a string or list, each element is processed

recursively and the results are effectively concatenated.

For a list whose car is an integer, the cdr of the list is processed

and padded (if the number is positive) or truncated (if negative)

to the width specified by that number.

A string is printed verbatim in the mode line except for %-constructs:

(%-constructs are allowed when the string is the entire mode-line-format

or when it is found in a cons-cell or a list)
%b -- print buffer name. %f -- print visited file name.

*-- print *, % or hyphen. /m -- print value of mode-name (obsolete).

s-- print process status. %N -- print value of global-mode-string. (obs)

%p -- print percent of buffer above top of window, or top, bot or all.
n-- print Narrow if appropriate.

[-- print one [ for each recursive editing level. %] similar.

-- print %. %- -- print infinitely many dashes.

Decimal digits after the % specify field width to which to pad.

NOTE: The set-value method for mode-line-format sets the Edwin

variable mode-line-format to a -copy- of the new value. Thus, you

can't modify the buffer's mode-line by side-effecting the new value.

Also, the Emacs symbols in the new value are replaced with Edwin

variables. Setting the Emacs symbols to new values will cause the

Edwin variables to be updated, but the new values cannot contain Emacs

symbols. Edwin variables won't be substituted for the symbols and

Edwin will signal an error.

default-major-mode



72 A THE PRIMITIVES

*Major mode for new buffers. Defaults to fundamental-mode.

nil here means use current buffer's major mode.

NOTE: This variable can only be 'fundamental-mode in Edwin.

major-mode

Symbol for current buffer's major mode.

NOTE: This variable can only be a symbol in Edwin.

abbrev-mode

Non-nil turns on automatic expansion of abbrevs when inserted.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be nil in Edwin.

case-fold-search

*Non-nil if searches should ignore case.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be a boolean in Edwin.

mode-name

Pretty name of current buffer's major mode (a string).

NOTE: This variable can only be a string in Edwin.

fill-column

*Column beyond which automatic line-wrapping should happen.

Automatically becomes local when set in any fashion.



73

NOTE: This variable can only be an exact nonnegative integer in Edwin.

left-margin

*Column for the default indent-line-function to indent to.

Linefeed indents to this column in Fundamental mode.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

tab-width

*Distance between tab stops (for display of tab characters), in columns.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

ctl-arrow

*Non-nil means display control chars with uparrow.

Nil means use backslash and octal digits.
Automatically becomes local when set in any fashion.

NOTE: This variable can only be t in Edwin.

truncate-lines

*Non-nil means do not display continuation lines;

give each line of text one screen line.

Automatically becomes local when set in any fashion.

Note that this is overridden by the variable

truncate-partial-width-windows if that variable is non-nil

and this buffer is not full-screen width.

NOTE: This variable can only be a boolean in Edwin.



74 A THE PRIMITIVES

default-directory

Name of default directory of current buffer. Should end with slash.

NOTE: This variable can only be a string in Edwin.

auto-fill-hook

Function called (if non-nil) after self-inserting a space at column

beyond fill-column

NOTE: This variable can only be nil in Edwin.

buffer-file-name

Name of file visited in current buffer, or nil if not visiting a file.

NOTE: This variable can only be a string or nil in Edwin.

buffer-auto-save-file-name

Name of file for auto-saving current buffer,
or nil if buffer should not be auto-saved.

NOTE: This variable can only be a string or nil in Edwin.

buffer-read-only

Non-nil if this buffer is read-only.

NOTE: This variable will only evaluate to a boolean in Edwin.

buffer-backed-up

Non-nil if this buffer's file has been backed up.



75

Backing up is done before the first time the file is saved.

NOTE: This variable can only be a boolean in Edwin.

selective-display

t enables selective display:
after a -M, all the rest of the line is invisible.

"-M's in the file are written into files as newlines.
Integer n as value means display only lines

that start with less than n columns of space.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be nil in Edwin.

selective-display-ellipses

t means display ... on previous line when a line is invisible.

Automatically becomes local when set in any fashion.

NOTE: This variable can only by nil in Edwin.

overwrite-mode

Non-nil if self-insertion should replace existing text.
Automatically becomes local when set in any fashion.

NOTE: This variable can only be nil in Edwin.

buffer-undo-list

List of undo entries in current buffer.

NOTE: This variable is not supported by Edwin.

newline



76 A THE PRIMITIVES

Insert a newline. With arg, insert that many newlines.
In Auto Fill mode, can break the preceding line if no numeric arg.

NOTE: Doesn't do anything special in Auto Fill mode in Edwin.

blink-paren-hook

Function called, if non-nil, whenever a char with closeparen syntax is self-

inserted.

NOTE: This variable is not supported in Edwin.

user-full-name

Return the full name of the user logged in, as a string.

NOTE: In Edwin, this is the current login name as given in utmp, NOT
the pw-gecos field from the /etc/passwd entry.

interactive-p

Return t if function in which this appears was called interactively.

This means that the function was called with call-interactively (which

includes being called as the binding of a key)
and input is currently coming from the keyboard (not in keyboard macro).

NOTE: This function always returns t in Edwin.

do-auto-save

Auto-save all buffers that need it.
This is all buffers that have auto-saving enabled

and are changed since last auto-saved.

Auto-saving writes the buffer into a file
so that your editing is not lost if the system crashes.
This file is not the file you visited; that changes only when you save.



7 7

Non-nil argument means do not print any message if successful.

NOTE: The nomsg argument is not supported by Edwin.

random

Return a pseudo-random number.

On most systems all integers representable in Lisp are equally likely.

This is 24 bits' worth.

On some systems, absolute value of result never exceeds 2 to the 14.

If optional argument is supplied as t,

the random number seed is set based on the current time and pid.

NOTE: The random number seed is set based on the current real and

process times only.

indent-tabs-mode

*Indentation can insert tabs if this is non-nil.

Setting this variable automatically makes it local to the current buffer.

NOTE: This variable can only be a boolean in Edwin.

make-keymap

Construct and return a new keymap, a vector of length 128.

All entries in it are nil, meaning "command undefined".

NOTE: Edwin requires that this be a comtab.

make-sparse-keymap

Construct and return a new sparse-keymap list.

Its car is 'keymap and its cdr is an alist of (CHAR . DEFINITION).

Initially the alist is nil.



78 A THE PRIMITIVES

NOTE: Edwin requires that this be a comtab.

esc-map

Default keymap for ESC (meta) commands.

The normal global definition of the character ESC indirects to this keymap.

NOTE: This variable is not supported by Edwin.

ctl-x-map

Default keymap for C-x commands.

The normal global definition of the character C-x indirects to this keymap.

NOTE: This variable can only be a comtab in Edwin.

completion-auto-help

*Non-nil means automatically provide help for invalid completion input.

NOTE: This variable can only be a boolean in Edwin.

enable-recursive-minibuffers

*Non-nil means to allow minibuffers to invoke commands which use

recursive minibuffers.

NOTE: This variable can only be a boolean in Edwin.

minibuffer-help-form

Value that help-form takes on inside the minibuffer.

NOTE: help-form is not supported by Edwin.



79

delete-exited-processes

*Non-nil means delete processes immediately when they exit.

nil means don't delete them until 'list-processes' is run.

NOTE: This variable can only be a boolean in Edwin.

process-connection-type

Control type of device used to communicate with subprocesses.

Values are nil to use a pipe, t for a pty (or pipe if ptys not supported).

Value takes effect when 'start-process' is called.

NOTE: This variable can only be a boolean in Edwin.

pop-up-windows

*Non-nil means display-buffer should make new windows.

NOTE: This variable can only be a boolean in Edwin.

next-screen-context-lines

*Number of lines of continuity when scrolling by screenfuls.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

split-height-threshold

*display-buffer would prefer to split the largest window if this large.

If there is only one window, it is split regardless of this value.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

window-min-height



80 A THE PRIMITIVES

*Delete any window less than this tall (including its mode line).

NOTE: This variable can only be an exact integer greater than 1 in Edwin.

window-min-width

*Delete any window less than this wide.

NOTE: This variable can only be an exact integer greater than 2 in Edwin.



REFERENCES 81

References

[1] Harold Abelson. Gerald Jay Sussman, and Julie Sussman. Structure and In-
terpretation of Computer Programs. MIT Press. 1985.

[2] William Clinger (editor). Revised4 report on the algorithmic language Scheme.
Technical Report Al Memo 848b, Mass. Inst. of Technology, Artificial Intelli-
gence Laboratory. 1992. Forthcoming. Simultaneous publication expected with
Lisp Pointers and University of Oregon.

[3] Chris Hanson. MIT Scheme User's Manual. for Scheme Release 7.1. Mass.
Inst. of Technology, Cambridge, MA, 0.9 edition. 1991. DRAFT.

[4] Chris Hanson, the MIT Scheme Team, and a cast of thousands. MIT Scheme
Reference Manual, for Scheme Release 7.1.3. Mass. Inst. of Technology, Cam-
bridge, MA, 1.1 edition, November 1991.

[5] Bil Lewis, Dan LaLiberte, and the GNU Manual Group. GNU Emacs Lisp
Reference Manual. Free Software Foundation, Cambridge, MA, first edition,
March 1990.

[6) David Notkin and William G. Griswold. Enhancement through extension:
The extension interpreter. Proceedings of the SIGPLAN 87 Symposium on In-
terpreters and Interpretive Techniques (ACM SIGPLAN Notices), 22(7), July
1987.

[7] David Notkin, Norman Hutchinson, Jan Sanislo, and Michael Schwartz. Hetero-
geneous computing environments: Report on the acm sigops workshop on acco-
modating heterogeneity. Communications of the ACM, 30(2):132-140, Febru-
ary 1987.

[8] James M. Purtilo. The polylith software bus. Technical Report UMIACS-TR-
90-65, University of Maryland, Institute for Advanced Computer Studies, May
1990.

[9] Richard Stallman. GNU Emacs Manual. Version 18. Free Software Foundation.
Cambridge, MA, sixth edition, March 1987.


